
\

A BRIEF SURVEY OF COMPUTER LANGUAGES FOR

* SYMBOLIC AND ALGEBRAIC MANIPULATION

By:

B. Raphael
Stanford Research Institute

D. G. Bobrow
Bolt, Beranek and Newman

L. Fein
Synnoetic Systems

J. W. Young
National Cash Register Company

(A report of the Comparison of Languages Subcommittee of the ACM
£pecial Interest Committee on Symbolic and Algebraic Manipulation.
This report was presented at the IFIPS Working Conference on Symbol
Manipulation Languages , Pisa , Italy, September 1966.)

* The work reported herein was supported in part at Stanford
Research Inst~tute by the Air Force Office of Scientific Research,
under Contract No. AF 49(638)-1752, and in part at Bolt , Beranek
and Newman by the Advanced Research Projects Agency.

ABSTRACT

This paper is the result of a study conducted by the Comparison
of Languages Subcommittee of the ACM Special Interest Committee on
Symbolic and Algebraic Manipulation (SICSAM). It reports on the
following programming languages: ALTRAN, AMBIT, COGENT, COMIT, CON­
VERT, CORAL, DYSTAL, FLIP, FORMAC, FORMULA ALGOL, IPL-V, LISPl.5,
LISP2, L6 , PANON, SLIP, SNOBOL, AND TRAC. Several other languages
are also briefly discussed.

The paper classifies each language as primarily a list processor,
general-purpose language, linked block language, algebraic formula
manipulator, pattern-directed string processor, or pattern-directed
structure processor. For each category the paper:

(1) Describes properties that members of the group have in
common;

(2) Gives a brief description of each language in the group
including an excerpt from a program in the language that
demonstrates the kind of problem for which the language
is well suited, and

(3) Compares fue features of the languages in the group.

The paper also contains as appendices:

(1) A reference chart that summarizes the features of all the
languages covered;

(2) A comparison chart that emphasizes the salient distinctions
between selected pairs of similar languages; and

(3) A set of annotated examples of programs in various languages
that solve similar problems, thus illustrating differences
in data representations, program forms, and notations.

A board of consultants, including experts in each of the
languages, contributed data and reviewed a draft of this paper for
the authors.

i

I INTRODUCTION

For conventional applications, stored-program digital computers
are viewed primarily as number processors; the users require units of data
that are numbers to be mapped into other numbers. On the other hand, for
algebraic formula manipulation, information retrieval, computational lin­
guistics, automatic decision-making, and other increasingly important
applications, computers are more conveniently viewed as primarily symbol
processors; the users require units of symbolic data to be transformed
into other symbols or symbolic structures. Several papers in the lltera-

. 1,2,3 4
ture describe the advantages and techn1ques of symbol processors. ' *
This paper surveys currently available programming languages for symbolic,
rather than arithmetic, computation.

II NATURE OF THE SURVEY

The purpose of this report is to provide an overview, rather
than specific detailed descriptions and analyses of the many currently
available symbol-manipulation languages. No attempt is made to list all
experimental or proposed symbol-manipulation languages. The following
criteria for inclusion in this survey were used:

(a) The language should contain symbolic or algebraic
manipulation facilities as integral features.

(b) It should be fully implemented by the time of this
writing (July 1966).

(c) It should contain features that make it uniquely
preferable over any other language for some class
of users, conditions, or problems.

An expert in each of the included languages submitted data
about his language; however, the authors alone are responsible for many
of the judgments concerning the merits of various languages.

The following languages are covered: ALTRAN, AMBIT, COGENT,
COMIT, CONVERT, CORAL, DYSTAL, FLIP, FORMAC, FORMULA ALGOL, IPL-V,
LISPl.5, LISP2, L6 , PANON, SLIP, SNOBOL, and TRAC. For each of six
groups of languages having somewhat similar characteristics, we shall
(1) describe properties that members of the group have in common;
(2) give a brief description of each language in the group, including
an excerpt from a program in the language that demonstrates the kink
of problem for which the language is well suited; and (3) briefly compare
the features of the languages in the group.

* Superscript numbers refer to references given at the end of this paper.

1

Three appendices at the end of this paper contain the follow­
ing: (1) a reference chart that summarizes the features of all the lan­
guages covered; (2) a comparison chart that emphasizes the salient dis­
tinctions between selected pairs 9f similar languages; and (3) a set of
annotated examples of programs in various languages that solve similar
problems, thus illustrating differences in data representations, program
forms, and notations.

2

III LIST PROCESSORS

IPL-V6 ,6 and LISPl.57 ,8 are the oldest and most widely-used
list-processing languages. Each permits the construction and analysis
of certain well-defined forms of tree and list structures. These lan­
guages are well suited only for those problems whose data can conveni­
ently be encoded into the particular forms. In most implementations of
these two languages, the representation of numbers and calculation of
arithmetic results are particularly awkward and inefficient.

IPL-V6 ,6

IPL-V is an autonomous programm~ng system having more than
100 list-processing, housekeeping, input-output, and arithmetic instruc­
tions. It is well documented and has been widely implemented. However,
such newer developments as the notational and arithmetic convenience of
SLIP;9 the power of recursive definitions in LISP;7,8 and the flexibility
of low-level operations in L6;lO,ll suggest that IPL-V is obsolescent.

IPL-V programs resemble programs written in machine language.
Storage allocation, including retrieval of abandoned list cells for re­
use ("garbage collection"), is the programmer's responsibility_

The following routine named Rl, which reverses the order of
the elements on a list, shows the general appearance of IPL-V code:

Rl
70
40

12

LISPl.57 ,8

J60
J8
HO
Rl
HO
J65
J68 o

Skip first element
Terminate if done
Save current place
Reverse rest of list (recursively)
Get current element
Insert at end
Delete from top and stop

LISPl.5 is a language for defining and applying manipulative
functions to binary trees of symbols., Standard encoding rules permit
the programmer to manipulate data-list structures represented by the
comma-and-parenthesis notation, e.g.

(THIS,IS,(A,LIST,STRUCTURE),OF,«(VARYING),DEPTH»).

LISP programs (i.e., function definitions) are usually repre­
sented internally as list structures themselves; however, a more under­
standable and less heavily parenthesis-laden "metalanguage" notation is
used in some new LISPl.5 implementations. The most common program struc­
ture is a high-level conditional expression that permits recursion.

3

Push-down store maintenance and garbage collection are handled auto­
matically. A function defined as follows creates a list which is the
reverse of its argument list x ('car[x]' is the first element of the
list x, and 'cdr[x], is the rest of the. list):

reverse[x] := [if null[x~ then NIL

else append[reverse[cdr[x]];list[car[x]J]J.

Comparison

IPL-V is a straightforward low-level list-processing language.
LISPl.5 is a more sophisticated, more automatic language with a power­
ful but somewhat unconventional way of programming. More detailed
descriptions and comparisons of these languages (along with SLIp9 and
COMIT1a) may be found in Reference 13.

IV GENERAL-PURPOSE IANGUAGES

Some problems require both some symbolic and some numerical
computation. Systems have been developed to provide the capabilities
of both a symbolic-manipulation system and a numerical algebraic com­
piler. SLIp9 and DYSTAL14 are systems that give existing algebraic
languages list-processing capabilities. LISP215 and FORMULA ALGOL16

are new systems designed for both symbolic and numeric processing. The
following discussions will focus upon the symbol-manipulation features
of these four languages.

SLIpS

SLIP is an extension of FORTRAN, MAD, ALGOL, or any similar
algebraic language. It consists of a repertoire of symbol-manipulating
subroutines that may, except for a few machine-coded basic processes,
all be written in the host language.

SLIP has been operational for several years. It has been
embedded into many host languages on a variety of machines. Because
SLIP is by definition always an extension of some well-known language,
it is easy to implement and learn.

Its basic symbolic data form is a symmetric list structure
with an identifying "head" cell. This permits pointers to scan for­
wards or backwards through list structures. A "reference" counter in
each head cell permits continual, largely automatic garbage collection.

With the recent addition of a string pattern-matching feature
(see Section VII), SLIP's versatility has been increased. The process­
ing of arrays, list structures, and strings may now be mixed.

4

The following example creates a complex SLIP list structure:

DIMENSION LST(17)
C **tLIST(X)t STORES THE NAME OF AN EMPTY LIST INTO X

CALL LIST (LST(l»
DO 1 I = 2,17

C ** tNEWTOP(X, Y) t MAKES X A NEW FIRST ELEMENT OF
C ** LIS T NAMED IN Y

1 CALL NEWTOP(LIST(LST(I»,LIST(I-l»

DYSTAL14

DYSTAL is essentially a set of FORTRAN subroutines. The basic
data element is a list, whose elements may be numbers, alphanumeric
strings, or names of other lists. However, lists of names of other
lists should generally be kept separate from lists of data. Each list
is stored in a block, including a five-cell header, of consecutively
addressed memory locations (rather than the usual linked-pointer struc­
ture). This system greatly speeds up the retrieval of the n-th item
on a list (because it is now accessible by normal FORTRAN array address­
ing). However, the major advantage of variable-length list storage is
lost. Each list-storage area is assigned, from a single available space
block, at the time it is needed in the program. A list may be erased
only under program control. Erasure consists of resetting the available
space pointer, thereby erasing that list and all subsequently created
ones. (Some additional flexibility is achieved by allowing the available
space block to grow or shrink from either end.)

The following example is a DYSTAL program segment that reads
in lists of attributes, sorts them according to a specified list of
keys, and print s the records out in the new sorted order':

C **READ IN ARRAY OF KEY ITEM NUMBERS,
C ** AND READ DATA RECORDS

LKEY = LSREAD(NKEY)
CALL LSREAD (NAME)

C **CALL SORTING ROUTINE, THEN PRINT.
C ** "LOT" GETS CELL CONTENTS.

CALL MSORT(NAME,LKEY)
N = LOT (NAME)
DO 10 I = 1,N
LIST = ITEM(I,NAME)
IMAT = LMAT(LIST)

10 CALL IPRINT(LOT(IMAT),l,LOT(LIST) ,LIST)

LISP216

LISP2 offers the features of a list processor, a numerical
algebraic compiler, and a pattern matcher, in a single uniform programming

5

system. In addition, low-level bit and logical operations give LISP2
capabilities comparable to machine languages.

LISP2 combines the semantics of ALGOL and LISPI.5 with a syntax
that resembles that of ALGOL, but is augmented to include more data repre­
sentations. Although at the top level every program consists of the
evaluation of functions applied to arguments (as in LISPI.5), a function
definition usually consists of block-structured declarations and program
statements (as in ALGOL).

As long as only arithmetic functions, variables, and data are
employed, LISP2 produces code comparable to that produced by a good
ALGOL compiler. When list processing, array references, and arithmetic
are mixed, the efficiency of the resulting code depends upon the pro­
grammer's insertion of appropriate declarations.

The following program computes the length of the longest
initial segment common to two lists X and Y:

INTEGER FUNCTION LCOM(X,Y);
BEG IN INTEGER N;

FOR N~ STEP I WHILE X AND Y AND CAR X = CAR Y DO
BEGIN X~DR X; Y+-CDR Y END;
RETURN N

END

FORMULA. ALGOL16

This language uses the control structure and most other
attributes of ALGOL. However, it provides capabilities to do arithmetic
and logical computation, algebraic formula manipulation, list process­
ing, and some string processing.

The data space and operation set of ALGOL 60 were extended by
adding two simulated machines in the form of packages of run-time rou­
tines to create and manipulate formulae and list structures. New kinds
of declarations, expressions, and statements were added to the ALGOL
syntax.

Transfer functions in FORMULA ALGOL map one type of data
object onto another; e.g., an algebraic formula created by means of
list-processing and symbolic-data manipulation may be "transferred"
into a real number by complete substitution of numbers for variable
names and by evaluation of the result. Transformations may be defined
which map a given class of data objects onto another.

One area to which FORMULA. ALGOL is particularly well suited
is formula manipulation in unusual mathematical systems. For example,
if the distributive and commutative laws do not hold, several features
of the language dealing with formula manipulation can still conveniently

6

be used--e.g.~ Markov algorithms, substitution processes, and formula
evaluations.

The following sample FORMULA ALGOL statements are from a pro­
gram that solves algebraic equations containing a single occurrence of
the variable X on the left hand side: (See Appendix III for further
explanation.)

BEGIN

END

FORM A,B,C,X; SYMBOL PLUS,TlMES,S;

B~: ANY;
C+-C: ANY;
PLUS~/[OPERATOR:+][COMM:TRUE];
TlMES~/[OPERATOR:*][COMM:TRUE];
S~[[

(AITlMESIB) = C ~ .A = .C / .B,
A / B = C ~ .A = .C * .B,

X = C .~ .X = .C]];
E ~ K*H + (M/(H-K)+X)*N = P;
PRINT (E,E.tS);

Comparison

All four languages discussed in this section have both symbolic
and arithmetic computation facilities. SLIP and DYSTAL extend host lan­
guages to fit them for certain classes of list processing. SLIP has
been used successfully for several list-processing applications. DYSTAL
is a new and relatively untested language. Its limitations of (almost)
fixed-length lists, and of sequential erasure of symbolic-data storage,
make it best suited for numeric applications requiring only limited
amounts of list processing. However, sequential list storage will
simplify time-sharing implementations.

The two eclectic systems, LISP2 and FORMULA ALGOL, are both
still in an early experimental stage; each exists as a single implementa­
tion on a little-known computer. LISP2 seems to have advantages for
general list manipulation and string processing; however, it is designed
to operate only on a very large computer in a time-shared environment.
FORMULA ALGOL offers built-in packages for algebraic formula manipulation;
implementation is practical for medium-size, batch-processing computer
systems. However, its general list-processing facilities are somewhat
limited.

7

v LINKED":'BLOCK LANGUAGES

In the aforementioned symbol processors, computer memory cells
are assigned to data automatically. L61 0 ,11 and CORAL,17,19 on the other
hand, give the user low-level control--and responsibility--for details
of memory allocation such as the size of blocks of sequential storage
to be reserved and the locations of link pointers within those blocks.
At the expense of considerable attention to memory organization and
housekeeping details, an L6 or CORAL programmer can construct extremely
efficient list-processing programs tailored to particular problems.

L610 ,11

6 The elementary data unit in L is the memory block, which may
be defined to contain 1,2,4, ... , up to 128 words. The programmer defines
bit fields within the blocks. Each field has a one-character name; this
name refers to a specified set of bits (say 4-25) of a particular word
(say the 3rd) in every block in the system.

Twenty-six base registers are each identified by a single
character. A base-register identifier followed by a sequence of field
identifiers specifies a field. Thus ABC means "Take base register A;
take the B field of the block addressed by A; the C field of the block
it points to contains the data."

6 Operations in L can move, compare, and test fields; perform
arithmetic and logical functions; save and restore field contents; and
redefine fields.

An example of coding from a routine for sorting data follows:

ORDER
NDTEST
BACK

THEN(S,FC,X) (X,P,WA)
IF(XA,E,O)THEN(R,FC,X)DONE
IF(XB,E,XDB)THEN(XDA,P,XA) (XAD,P,XD) (X,FR,XA)NDTEST
IF(XB, L,XDB)THEN(XB, IC ,XDB) (X,D)BACK
THEN(X,A)NDTEST

CORAL17 ,19

CORAL includes operations for creating and modifying linked­
block structures, doing arithmetic, and performing higher-level list­
processing functions such as "recursive-delete" which removes from a
structure all blocks which are subordinate to a given block.

Perhaps the major restriction in the system is that the number
of pointers in a block is fixed at program-writing time, so that the
general nature of the information in a structure is not variable (al­
though of course the individual connections are).

8

The principal implementation of CORAL is on the TX-2 computer
at MIT Lincoln Laboratories. The syntax of this language, which uses
the TX-2 keyboard character set, is too obscure to permit an understand­
able example. The following program statement is typical:

DICTYES «TEXTP® ITIE) t 1) @(DICTW t 1) CONTROL

However, the following diagram illustrates the sort of data structure
that may be used. Here some text is organized into "rings" by word
sequence and occurrence:

TEXT RING

THE BOY HAS THE BALL
....

*
.... ~

"" "" - ,. - , .. , ...
....

~ ~ .. , -

OCCURRENCE
RINGS

BALL THE

* ~ - -* ~
....

*
..... • • • ,-,. , ,

DICTIONARY RING
* Ring Start

Comparison

6 6 CORAL and L both have linked blocks. However, the L pro-
grammer specifies the link elements directly and operates on them
individually. L6 is a relatively small system, easily implemented on
new machines. Higher, more sophisticated languages can be written in
L6. CORAL is a higher-level linked-block processor with a set of more
complex operations. New notation would have to be invented for new
implementations of the CORAL language.

CORAL has been used extensively for on-line modeling of
graphic display data. L6 has a much simpler control language and is
more suitable for batch-processing.

9

I

VI ALGEBRAIC-FORMULA MANIPULATORS

For many problems in applied mathematics it is necessary to
carry out extensive and complex algebraic or analytic derivations on

36 h symbolic mathematical expressions. A recent bibliography surveys t e
4 19

use of comEuters for various non-numerical mathematical tasks. FORMAC'
and ALTRAN 0 ,21 are systems designed specifically for the manipulation of

~G 23 1 symbolic-algebraic expressions. AMBIT , is a more general symbo -
manipulation system that somewhat resembles the string pattern-matching
systems of Section VII. However, its facilities are so strongly oriented
towards operations on formal mathematical expressions that we include it
in this group.

FORMAC4 ,19

FORMAC is an extension of FORTRAN IV. It can manipulate
algebraic expressions, what may be of any form, within roughly the
family of explicitly defined real elementary functions. An expression
can be named, and the name used as an argument of an arithmetic opera­
tion, of a function (EXP, SIN, differentiate, binomial coefficient,
etc.), or of a system command.

The most important system commands are:

LET (Assignment statement for symbolic data)

SUBST (Substitution)

EXPAND (Multinomial expansion and distributive law)

COEFF (Determines the coefficient of a power of a variable)

PART (Produces the first well-formed part of an expression, i.e.,
yields the first term or factor of a sum or product)

ORDER (Specifies the sequence of variables, etc., in an expression)

FIND (Determines if one or more variables appear, either explicitly or
by implicit dependence, in an expression)

EVAL (Produces a FORTRAN numeric value from a FORMAC expression)

MATCH (Compares two expressions for exact identity or mathematical
equivalence)

The limited amount of working space available for expressions
is the severest limitation of FORMAC. Automatic simplification of re­
sulting expressions occurs after execution of every FORMACinstruction;
however, since explosive expression growth is inherent in straightforward
formula manipulation, careful programming is still necessary.

The following program segment finds the first M coefficients
ai(x) of the power series expansion of the function G(x,t) about t = 0:

10

DO 100 N = O,M
C ** FMCFAC MEANS FACTORIAL, FMCDIF MEANS DIFFERENTIATE

LET A(N+l) = l/FMCFAC(N)*FMCDIF(G,T,N)
C ** REPLACE T BY ZERO

LET A(N+l) = SUBST A(N+l),(T,O)
C ** MULTIPLY OUT PRODUCTS AND POWERS OF SUMS

100 LET A(N+l) = EXPAND A(N+l)

ALTRAN20 ,21

ALTRAN, like FORMAC, is an extension of FORTRAN. It is
specifically directed toward large-scale computations with rational
functions of several (perhaps many) variables. An earlier, stand­
along formula-manipulation system called ALPAK21 also had facilities
for truncated power series with rational-function coefficients and for
systems of linear equations with rational-function coefficients. How­
ever, these have not yet been implemented in ALTRAN.

ALTRAN permits addition, subtraction, multiplication, division,
integral exponentiation, substitution, differentiation, and GCD computa­
tion On rational algebraic functions. The system also allows the user
to specify "side relations" which handle, in a limited way, certain
irrational quantities.

Typical fragments of an ALTRAN program follow:

POLYNOMIAL Al,A2,A3,Bl,B2,B3,F
C ** '=' '*' AND OTHER OPERATORS ARE NOW SYMBOLIC, NOT
C ** FORTRAN ARITHMETIC, FOR Al,A2, ... ,F.

Al = (RO+RI)**2
A2 = (RO+R2)**2
BI = RO**2+RO*R2+RO*R3-R2*R3

F = AI*A2*A3-AI*BI**2-A2*B2**2-A3*B3**2+2Bl*B2*B3
PRINT F, F(RO=1/CO,RI=I/CI,R2=I/C2,R3=1/C3)

AMBIT:a2,23

An AMBIT program processes a single data string, consisting
of a sequence of characters. The sequence is divided, by blanks, into
segments. Typical segments are an identifier, a number, a mathematical
operator, a parenthesis, or a special place-marker called a pointer,
which acts as a reference point for manipulation of the data string.

The basic operation in AMBIT is the replacement rule SI~2,
where Sl and S2 are string descriptions and " " is read "shall be
replaced by". A string description consists of literals and dummy

11

variables; the variables may be declared to represent particular classes
of subsequences. The pattern string description Sl must contain a
pointer; the AMBIT rule is similar to a statement in a pattern-matching
language (Section VII); however, the pattern string description must
contain a pointer and balanced parentheses. These restrictions permit
the efficient manipulation of parenthesized strings.

The following program moves a pointer p~ through an expression
to "multiply out" all products of sums or differences.

SCAN:
MOLT:

EQ~ Q .-. EQ2~ ro Q;
if ro AX(B sign C) - (AXB) sign ,AXC)
or p~ (A sign B)XC - (AXe) sign (BXC)
then go to SCAN;
ro seg'-' seg p~
if EQ~ Q ro .-. EQ~ Q
then go to EXIT
else go to MULT;

Comparison

AMBIT is an excellent tool to aid in the writing of a formula
manipulator, but is clearly not one itself. Its operations are oriented
toward the programmer who would like to design a formula-manipulation
system, not the engineer who would use it. AMBIT could also be used
for applications other than formula manipulation where the manipulation
of parenthesized strings of symbols is useful.

ALTRAN runs with high efficiency in time and storage for the
limited class of problems for which it was designed, i.e., manipulation
of rational functions. FORMAC, however, has much greater flexibility.
It offers the user an assortment of both low-level operations (e.g.,
COEFF) which allow him to program his own detailed manipulation, and
high-level ones (like differentiation) which carry out very complex
operations.

VII STRING PROCESSORS

A. Pattern-Directed

The pattern-directed string-processor languages have a common
basic structure, related to the mathematical model of processing known
as a Markov algorithm. A specified data'string is compared with a
pattern. If it matches (according to the criteria of the language)
then the input string is transformed according to a format associated
with the pattern, usually utilizing the parsing of the original string
determined in the matching process. If the match is unsuccessful
then no transformation occurs. In some languages the results of the
parsing can be saved and the segments found can be utilized later in
the program, outside the individual matching statement.

12

The basic units of the data string, called items, may be
either individual alphanumeric characters, special characters, or pre­
specified strings of characters. The entire data string to be scanned
for a match, called the workspace, may be unique in the system or it
may be specified independently for each rule.

A pattern consists of a sequence of elementary patterns. A
pattern matches the workspace if each of the successive elementary
patterns matches successive contiguous segments of the workspace.
Typical elementary patterns include literals; variables which match
any segment of the workspace; variables which match any segment of
specified length, i.e., containing a specified number of items; seg­
ments identified by previously-assigned names; and segments which have
special properties or belong to certain classes.

The construction of a new string is specified by a format
which is a sequence of elementary formats. Typical elementary formats
include literals, segment names, and string-segment-valued function
calls. The constructed string usually replaces the matched segment of
the workspace.

COMIT IIl2

COMIT is the oldest and best documented pattern-directed
string processor. COMIT II is a streamlined system that contains
several new features but can run all old COMIT programs.

String items are strings of characters optionally tagged
with subscripts. The characters and subscripts in an item may easily
be changed under program control. Numerically-addressed "shelves"
provide temporary storage for strings when they are not in the work­
space.

The following program will read a deck of cards and punch out
just those cards containing the word "THE".

COM
K BLANKS

A $+THE-I-$//*WAII 2 3 *
* $ //*RTKI A

END

SNOBOL324 ,26

The SNOBOL string items are always individual characters.
However, any segment can easily be given a mnemonic name. Such names
are assigned automatically to variable symbols during matches, and may
be used to retrieve the segments for future processing. Functions
may be defined, in SNOBOL, to test or transform strings.

13

The following program segment removes all occurrences of the
letters A, E, I, 0, U from a string named TEXT:

START VOWEL = "A,E, I ,O,U,"
VI VOWEL *V* "," =
V2 TEXT V =
END •••

PANON-IB26

/F(END)
/S(V2)F(VI)

This new language allows the programmer to define variables
that will match any string accepted by a specified context-free grammar.
The production rules of the grammar appear as part of the PANON program.

The following PANON statements are from a program that con­
verts fully-parenthesized arithmetic expressions into Polish prefix
notation:

"'-Cp* "'E

"'-CD* "'OP
"'-TR*/CONV*

("'E*/l "'OP

Comparison

'" -/*
"'-/*
"'-/* +

"'E*/2*)

"'-LET
("'E "'OP "'E)

"'-/* "'-/* * "'-/*

'" -- "'OP "'E*/l "'E*/2
'" -GOTO* /CONV

/

COMIT has flexible input-output and subroutine-linkage
facilities, a "list rule" for fast dictionary searches, and logical
subscripts allowing convenient multidimensional tagging of items.
SNOBOL permits mnemonic names for strings, explicit function calls,
and automatic checking for parenthesis-balanced strings. The lan­
guages are so close in capabilities that considerations such as
availability of information and implementation would probably be
dominant selection criteria. \

PANON is a relatively untested language that offers new
power for recursive scanning of highly structured string data.

B. Macro-Expander

A somewhat unique string procassor'~alled TRAC has recently
been introduced. The TRAC (Text Reckoning And Compiling) language32

is an interpretive, string-manipulating language designed for on-line
interactive use. In the TRAC language, one can write procedures for
accepting, naming, and storing any character string emitted from a
teletypewriter or other device; for modifying any string; for treating

14

any string as an executable procedure, as a name, or as a text; and for
printing out any string.

The published version of TRAC contains primitive functions
for: typewriter input and output, naming and calling strings, text and
procedure macro generation, management of back-up storage, test and
branching, integer arithmetic, logic vector (strings of O's and l's)
manipulation, and diagnostics. The logical foundations of TRAC derive
from the notion of a macrogenerator (specifically Eastwood and McIlroy's
"Macro-SAP" of 1959) as extended to test strings. TRAC is particularly
convenient for synthesis of strings and executions of procedures, but
in its present state it is relatively clumsy in certain analytical
situations, such as parsing fully parenthesized arithmetic expressions.

At the installations where theTRAC system is now implemented,
the more interesting directions of experimental application seem to be:
(1) for use in various kinds of text management and storage; e.g., edit­
ing and machine aided instruction; (2) for a command system for the
control of hardware devices, e.g., driving an automatic telephone dial­
ling set, or a graphic display; (4) as a modular logical base for the
insertion of additional machine-coded primitives, e.g., floating point
arithmetic capabilities, pattern-matching; and (5) as the complete
operating system for multiple-user management of a computer, i.e., by
dropping a time-sharing package into the TRAC translator which is shared
by all the users.

The following illustration of TRAC programming illustrates
naming and storage of text, defining and calling of an iterative (recur­
sive) command procedure, and "plain language" user interaction under
control of the command procedure. The apostrophe is the terminator of
the input string, and what is typed out by the computer is underlined.

VIII

#(DS,TEXT,THIS IS TRAC) ,

#(DS,PROGRAM,(#(PS,(}

**»#(PS, (

)#(CL,#(RS»)#(CL,PROGRAM») ,

(CL,PROGRAM) ,

**TEXT'

THIS IS TRAC

**

names and stores string

records command procedure

initiates command procedure

computer asks for input,
name provided

named string is printed out

waiting for next input command

PATTERN-DIRECTED STRUCTURE PROCESSORS

Pattern-directed data-processing features, similar to features
of the aforementioned string processors, have been embedded into more­
general symbol-manipulation languages. [For a discussion of some of the
advantages and disadvantages of embedding, see Reference 27.J The
principal advantages of embedding are that the pattern-directed

15

processor may defer to the host language for such facilities as input,
output, storage management, and flow of control; and the capabilities
of both the pattern matcher and the symbol manipulator are available,
producing a more powerful overall system.

Pattern-directed features have been implemented in SLIP, and
will be important components of both LISP2 and FORMULA ALGOL. CONVER~8
and FLIp29 are essentially pattern-directed structure processors embedded
into LISPl.5. COGENT30 ,31 represents a somewhat different approach to
manipulating highly structured data.

CONVER~ 8 and FLIp29

These languages are like the pattern-directed string processors
except that they operate on LISP list structures, rather than character
strings. The following additional types of elementary patterns are
available: subpatterns, i.e., specifications on the substructure of
a matched list-structure item; special matches, such as elementary
patterns for repeated segments, a segment which matches one of several
alternatives, or an item not equal to a specified item; and function
patterns--i.e., within a match an arbitrary LISP function may be
called to test the acceptability of a segment or influence the match
in other ways.

Suppose we wish to merge a list of two lists into a single
list by taking alternate elements, e.g., merge[«O 1 2)(A B C»J=
(0 AlB 2 C). After declaring that P and Q are element variables
and PPP and QQQ are segment variables, the following two CONVERT
rules will do the job. The first rule recursively merges the two
sublists, and the second is the terminating condition: If the two
sublists of the input are empty, then the output is the empty list.

«(P PPP)(Q QQQ»(P Q (*BEGN* «PPP)(QQQ»»)

«NIL NIL)

An example of the pattern part of a FLIP rule is:

($3 $3/(EQUAL(=REVERSE 1»)

The list following a "/" modifies the immediately preceding elementary
pattern. The "1" refers back to the first elementary pattern, i.e.,
the first $3. This pattern will match a list of six elements, the
second three of which are the same as the first three but in reverse
order.

16

COGENT30 ,31

This is a pattern-directed system with aspects of both string
and list processing. Externally, the data consists of phrases of some
context-free phrase-structure language whose syntax is specified by
"production rules" in the COGENT program. The basic operations of
COGENT synthesize and analyze these phrases according to patterns
which are phrases of the data language containing variable subphrases.
Internally, however, both the data and patterns are represented by
list structures which are obtained by parsing the data language, so
that the basic operations are a type of list structure pattern operation.
More general types of list structures may also be handled, and arith­
metic and symbol-table facilities are included.

The following COGENT routine will accept two list structures
representing algebraic expressions and produce a structure represent­
ing their product without introducing redundant parentheses:

$GENERATOR PRODUCT«X,Y)
+1 IF X =/ (EXP/(TERM»,X. X/=(TERM/«)(EXP)(»),X.

1/+2 IF Y =/ (EXP/(FACTOR»,Y. Y /=(FACTOR/«)(EXP)(»),Y.
2/ X /= (EXP/(TERM)*(FACTOR»,X,Y. $RETURN(X).).

(The symbol "=/" indicates analysis, "/=" indicates synthesis, and "+"
denotes "go to".) This routine can be used only after the syntax of
EXP, TERM, and FACTOR has been described by production rules including,
for example,

(TERM) = (FACTOR), (TERM) * (FACTOR) , (TERM)/(FACTOR).

Comparison

CONVERT and FLIP are both powerful systems which have concise
notations for mixing pattern matching with general list processing.
The differences between them, aside from gross notational differences,
are subtle and beyond the scope of this report.

COGENT is an experimental system specifically designed for
processing sentences of some context-free phrase-structure language.

IX OTHER LANGUAGES

To the best of the authors' knowledge, this paper is a report
of all languages that come close to meeting the criteria of Section II.
The SICSAM Comparison of Languages Subcommittee would appreciate hear­
ing about omissions or new developments as they occur for inclusion in
future reports.

~7

The following languages, although not surveyed in detail here,
are of sufficient interest to mentioned briefly:

GP~3

The General Purpose Macrogenerator developed on the Atlas 2
computer at Cambridge, England, is in many respects similar to TRAC.
However, it is intended for use by experienced system programmers
rather than by scientists.

The basic idea of this pattern-directed string processor is
similar to that of PANON. Side conditions, in the form of production
rules, define the syntax of acceptable strings. AXLE has not been
implemented.

This experimental variant of LISPl.5 is implemented on the
STRETCH computer at Mitre Corp. The basic data structure is a trinary
tree. A subsystem called OAKTREET operates on-line display and light­
pen facilities.

AED

The AED languages, being developed by Dr. Douglas Ross at MIT,
are designed to combine the power of Algol with special symbol-manipulation
facilities for computer-aided design and on-line display control research.

PL/I

This "universal" language will have various symbol-manipulation
facilities. However, they have not been emphasized sufficiently to be
considered in this report.

x ACKNOWLEDGEMENTS

The authors wish to acknowledge the invaluable contributions
made to this report by the language consultants listed in the reference
chart (Appendix I). These consultants may be contacted directly for
further information about their respective languages.

18

APPENDIX I

The attached reference chart summarizes the informa­
tion in this report and tabulates details, such as
implementations, that were not included in the text.

I-I

1-1
I
~

NAME

IPL-V
6 ,IS

LISPl.5
7,8

SLIp9

DYSTAL
l4

LISP2
16

FORMULA
ALGOL

113

DATA FORM:
PROGRAMMER'S

Lists of ele­
ments which
name data
terms or other
lists.

Parenthesized
list structures
and dotted
pairs.

Parenthesized
list structures
and standard
host language
input data.

Character
strings, nwn­
bers or arrays;
chains of sym­
bolic arrays.

Numbers, char­
acter strings,
truth values,
parenthesized
list structures
and dotted
pairs, arrays.

Numbers, truth
values, arrays,
algebraic for­
mulae, list
structures.

DATA FORM:
INTERNAL

Binary trees
(i.e., 2 ad­
dress fields
per word) rep­
resenting list
structures.

Binary trees.

Headed lists of
2-word blocks
linked both
ways and all
permissible
host language
symbols.

Arrays with
special 5-word
heading, and
all FORTRAN
symbols.

Binary trees,
numbers and
arrays.

PROGRAM
DESCRIPTION

Lists of ele­
mentary oper­
ations and
subroutine
calls.

IMPLEMENTATIONS

IBM709/90, 650
CDC 1604
Bendix G20
Philco 2000
Univac 1105
AN/FSQ-32
Prob. others

Functions, IBM709/90, 1620
defined by AN/FSQ-32
conditional PDP-l ,6
expressions AFCRL M460
and recursion, SDS 930/40
applied to B5500
arguments.

Host language
extended with
list-process.
functions.

FORTRAN ex­
tended with
symbolic­
array man­
ipulation
functions.

Functions,
defined by
ALGOL-like
block struc­
tures, applied
to argument s .

Prob. others

IBM7090/94
CDC 1604,3200
IBM7044, 1620
Philco 2000
Atlas; IBM360
AN/FSQ-32
Prob. others

IBM7070;
IBM360-50,
basic sub­
routines
only.

AN/FSQ-32
IBM360-65*
PDP-6*
*Scheduled

by 1/67.

Numbers, arrays, I ALGOL extendedlcD G-2l;
linked lists, with formula Planned for
binary trees. and list- IBM360-67

processing
constructs.

BASIC
CAPABILITIES

Low-level, pure
list processing

High-level,
pure list and
tree process­
ing.

Host language
arithmetic
mixed with
symbol and
text manipu­
lation.

Arithmetic
mixed with
limited kinds
of list and
string process­
ing.

THUMBNAIL
EVALUATION

Obsolescent

Elegant, but
lacks some
practical
needs.

A successful
intrusion of
list process­
ing into
nwneric alge­
braic lan­
guages.

Minimal list­
processing
capabilities.

CONSULTANT

Prof. A. Newell,
Carnegie Inst. of
Tech., Pittsburgh,
Pa.

Dr. B. Raphael,
Stanford Research
Inst ., Menlo Park,
Calif.

Prof. J. Weizenbaum,
Project MAC, MIT,
545 Technology Sq.,
Cambridge, Mass.

Prof. J. Sakoda,
Brown University,
Providence, R.I.

Arbitrary mix of Highly promis- Dr. S. Kameny,
arithmetic and ing, but pre- SDC, 2500
symbolic compu- sently experi- Colorado Ave.,
tation. mental. Santa Monica,

Calif.

Mix of arith­
metic and sym­
bolic computa­
tion, emphasiz­
ing formula
manipulation.

Highly prom­
ising but
presently
experimental.

Mr. T. Standish,
Computation Center,
CIT, Pittsburgh,
Pa.

-I
I
JJ

NAME

6 10 11
L '

CORAL
17 18 ,

FORMAC
4,19

ALTRAN
20 21 ,

AMBIT
22 23 ,

COMIT12

DATA FORM:
PROGRAMMER'S

Character
string, format­
ted under pro­
gram control.

Character
string, light­
pen or button
action.

Mathematical
expressions
representing
explicitly
defined real
elementary
functions.

Mathematical
expressions
representing
rational
functions.

Parenthesis­
balanced
character
string.

Strings of
character
strings which
may have sub­
scripts.

DATA FORM: PROGRAM
INTERNAL DESCRIPTION IMPLEMENTATIONS

BASIC
CAPABILITIES

THUMBNAIL
EVALUATION

Linked blocks
of various
sizes; linkages
and fields
specified by
programmer.

Linked blocks
of format
specified at
start of run.

Prefix­
delimiter
Polish
strings.

Blocks linked
into rooted
directed graphs
with no loops

Symmetric
linked lists.

Linked 2-word
blocks with

Conditional
statements
involving
concatenated
field identi­
fiers.

Obscure nota­
tion, based
on TX-2 char­
acter set,
for manipula­
ting ring
structures.

FORTRAN IV
extended for
formal alge­
braic opera­
tions.

FORTRAN II
extended for
formal
rational
function
operations.

Replacement
rules struc­
tured by
pointers or
parentheses.

Pattern­
directed

short -cut links.1 string proc­
essing.

MOBIDIC (Nat'l Low-level pro­
Bureau of Stds, gram control
Washington, DC) of linked-block
IBM7094,7040 memory struc-
Planned for: tures.
GE 635/45
IBM 360; PDP-7
SDS 940

MIT TX-2
PDP-7

IBM7090/94

IBM7040/44
IBM7090/94

CD 1604
Written en­
tirely in
ALGOL, mostly
machine­
independent.

Linked-block
data with
independent
threaded rings.

Formula manip­
ulation and
arithmetic.

Formula manip­
ulation and
arithmetic.

Detailed proc­
essing of form­
ulae and other
highly struc­
tured strings.

A chance for
programmers
to do effi­
cient low­
level list
processing.

Similar to
L6 . more ,
sophisticated
but less
easily obtain­
able and less
flexible.

Practical
formula­
manipul at ion
system.

More effi­
cient than
FORMAC for
a restricted
class of
users.

For the
formula­
manipulation
systems de­
signers.

IBM7040/44
IBM7090/94

Arbitrary An establish-
string ed string-
transformations. processing

system.

CONSULTANT

Dr. K. Knowlton
Bell Telephone
Labs., Murray
Hill, N.J.

Mr. W. Kantrowi·
MIT Lincoln Lab
Lexington, Mass

Mr. Peter Marks
IBM, 545 Techno
Sq., Cambridge,
Mass.

Dr. W. Brown,
Bell Telephone
Labs., Murray
Hill, N.J.

Mr. C. Christen
Computer Assocs
Lakeside Office
Wakefield, Mass

Prof. V. Yngve,
Graduate Librar
School, U. of
Chicago, Chicag
Ill.

NAME

SNOBOL
24,25

PANON­
lB 26

TRAC
32

CONVERT
28

FLIP
29

DATA FORM:
PROGRAMMER t S

Strings of
characters.

Strings of
characters.

Strings of
characters.

Numbers, list
structures,
arrays, char­
acter strings.

Parenthesized
list structures
and dotted
pairs.

DATA FORM: PROGRA1'vI
INTERNAL DESCRIPTION IMPLEMENTATIONS

Indexed blocks
of string
symbols.

Sequence of
string symbols.

Pattern­
directed
string proc­
essing.

Context-free
string
descriptions
and pattern­
directed
string proc­
essing.

Linear strings I Nested func­
or binary trees. tions applied

to arguments.

Binary trees,
numbers and
arrays.

Binary trees.

Pattern­
directed
structure
processing.

Pattern­
directed
structure
processing.

IBM360/40
IBM7040/44
IBM7090/94
RCA601/604
SDS930/940
CDC3l00

CSCE/CEP
(U. of Pisa)
Planned for:
IBM 7040/90

PDP-l,5,8
SDS 930
GE Datanet 30
IBM 7094 (MIT)
SAAB D-2l

(Swedish)
ICT 1202

(British)
Others

IBM 7090/94
AN-FSQ-32
PDP-6

IBM 7094
PDP-l

BASIC
CAPABILITIES

THmffiNAIL
EVALUATION

Arbitrary stringlAn establish­
transformations. ed string­

processing
system.

Recursive I Experimental
pattern- new language.
directed trans-
formations of
phrase-
structured
data strings.

CONSULTANT

Dr. R. Griswold,
Bell Telephone
Labs., Holmdel,
N.J.

Dr. A. Caracciol,
Centro Studi
Calcolatrici
Elettronichi,
Via Santa Maria,
Pisa, Italy

High level
interactive
string manipu­
lation.

Experimental Mr. C. N. Mooers
versatile on- Rockford Researc
line language. Inst., Inc., 140

Pattern­
directed trans­
formations
mixed with
arbitrary sym­
bolic computa­
tion.

Pattern­
directed
transformations
mixed with
arbitrary sym­
bolic computa­
tion.

An experi­
mental
approach to
concise high­
level pro­
grams via
mixed pattern
matching and
list proc­
essing.

Similar to
CONVERT.

Mt. Auburn st.,
Cambridge, Mass.

Mr. A. Guzman,
Project MAC,
545 Technology S
Cambridge, Mass.

Dr. D. G. Bobro"
Bolt, Beranek &
Newman, 50 Moult
St., Cambridge,
Mass.

NAME

COGENT
30

L-_~ __

1-1
I
~

DATA FORM:
PROGRAMMER'S

Sentences of
some context-
free phrase-
structured
language.

y

DATA FORM: PROGRAM
INTERNAL DESCRIPTION IMPLEMENTATIONS

Linked blocks. Production CDC3600/3800
rules defin-
ing data lan-
guage; analy-
sis and syn-
thesis func-
tion genera-
tors.

BASIC
CAPABILITIES

Analysis and
synthesis of
sentences of a
suitable for-
mal language.

-

TIIUMBNAIL
EVALUATION

Powerful for
limited appli-
cation, some-
what obscure.

CONSULTANT

Prof. J. C. Reyno:
Applied Math. Div
Argonne Nat'l. Lal
Argonne, Ill.

---- -

APPENDIX II

Comparison Chart

Some of the languages discussed in the paper are, at
least superficially, quite similar to each other. The
attached comparison chart emphasizes the salient dis­
tinctions between selected languages. The language
characteristics listed on this chart were chosen
primarily for their ability to discriminate between the
selected languages, rather than their importance in the
use of the languages.

11-1

1-1
1-1
I
~

(a) List Processors

Program form

Symbols

Data

Storage maintenance

Recursion and
Subprogram linkage

-- -~- -

(b) Linked Block Languages

Implementations

Program formalism

Data block sizes

Programming

Comparison Chart

LISPI.5 IPL-V

Function definitions and evaluations Lists of executable statements

Arbitrary mnemonics Highly restricted
-

Arbitrary binary trees List structures only

Automatic It garbage collection " Under program control
I

Fully automatic Push-down stores and other
"housekeeping" under program
control

------- ------ ----- --------- - ~--

L6 CORAL

Many (see Ref. Chart, Appendix I) Relatively inaccessible

Primitive statement forms, restricted Concise but difficult to learn
character set notations, large and unconven-

tional character set

n 2 cells per block, n=O,I, ... ,7. Arbitrary size, but must be
Mixture of block sizes and pointer fixed (with pointer conventions
s.tructure under program control. established) at start of run.

Low level; arbitrary definitions of, Built-in processes for manipu-
and operations on, data fields. lating "rings," particular

higher-level structures of
data blocks.

---- -- --- - -~ -- --

I-f
I-f
I

W

(c) Pattern-Directed String Processors

COMIT

Data Strings of "constituents" which are single
or groups of characters with optional sub-
scripts.

References for Shelf numbers
temporary storage

Working string segments Position numbers
referenced by:

Special pattern Conditions on subscripts
match conditions

(d) Algebra Manipulators

FORMAC

Data Any mathematical formula

Simplification "Zero and one" simplification automatic;
factoring and expansion under program
control.

Stress Generality

Program form New syntactic forms; e.g., "LET"
statements

SNOBOL

Strings of individual charac-
terse

String names

Automatically assigned names

Parenthesis balance
I

I

I

ALPAK-ALTRAN

Rational algebraic expressions

Automatic reduction by GCD

Efficiency, for restricted
class of data.

Extended semantics, with
TYPE ALGEBRAIC declarations

-

.....
I
~

(e) General-Purpose Languages

Formula Algol

Special data type Algebraic expression

Derivation Algol, extended for list processing

Implementations G-21; 360-67 planned

Declarations Required for all variable types

System size Moderate
--. -- - -----.-- ---- --

LISP2

Functional expression

Algol syntax, LISP program
and data structures

Q-32; 360-65 and PDP-6 in
progress

I

Optional; necessary only to !

ensure efficiency I

Presently impractically large
-- - --- -- -

Appendix III: Annotated Sample Programs

In order to provide a basis for comparing symbol-manipulation languages
with respect to data representations, program forms, and notations, a
choice of two problems was offered to the language consultants listed
in the Reference Chart (Appendix I):

Problem 1: Convert a fully-parenthesized algebraic expression into
prefix form.

Problem 2: Solve an algebraic equation for the single occurrence of
some variable x.

Each consultant was asked to select the problem most easily programmed
in his language, and to submit an annotated program for its solution.

For certain languages, e.g., TRAC, neither problem was considered
suitable. Also, we must realize that these brief, examples cannot begin
to show the full power of most of these languages. Nevertheless, the
programs printed below should be illuminating.

Only two programs were submitted for problem 2 ("Solve an equation for
x"): one in ALTRAN and one in FORMULA ALGOL. Of the twelve solutions
for problem 1, ("convert to prefix form"), several different interpre­
tations of the problem lead to different solution algorithms. In
particular, some of the programs output a Polish parenthesis-free string;
others retain the parentheses, thereby allowing operators with an
indefinite number of arguments, but rearrange terms into the operator­
first "Cambridge Polish" form. The particular problem being solved
should be clear from the discussion associated with each program.

A. IPL-V

This program translates, from infix to prefix form, a list structure
defined by the BNF

e:: = symbol I (e symbol e)

In this case it is unnecessary to distinguish the primitive terms from
the operators.

The method relies on the fact that the prefix form can be obtained by
replacing the open parenthesis by the operator and deleting the operator
and the closing parenthesis. Note that the executive is independent of
the routine.

111-1

Program:

EXEC EO 11W20
(SET TO PRINT ON TELETYPE) J125
CONVERT LO 50LO

910
CONVERT MO 10MO

910
CONVERT NO 10NO
(PRINT TELETYPE POST MORTEM) 910 $lS
LOCAL SUBROUTINE: 910 40HO
EXECUTE PO ON INPlJr AND PRINT PO J150
CONVERT INPUT TO PREFIX FORM PO J60
00 LOCAL SUBROUTINE 910 910 JS
GET FIRST SYMBOL 910 12HO

10(
TEST IF FORM: (EXP OPR EXP) J2
IF NOT, OR FORM: EXP. GO PAST 70J60
PUSH (-LOCATION STACK 40WO
SAVE (-LOCATION 60WO
GO TO NEXT J60
RECURSE ON LEFT SUB EXPRESS ION 910
GET OPR SYMBOL 12HO
REPLACE (BY OPR (MAKE PREFIX) 21WO
POP (-LOCATION STACK 30WO
DELETE MIDDLE OPR 31HO
RECURSE ON RIGHT SUBEXPRESSION 910
DELETE FINAL) 31HO 0

Data: --
LO 0

(

A
+
(

B

C
)
) 0

MO 0
(
(

A
+
B
)

C
) 0

111-2

Resulting

LO

MO

NO

B. L1SPl.5

output:

04 0
00 +0
00 AO
00 -0
00 BO
00 CO

04 0
00 -0
00 +0
00 AO
00 BO
00 CO

04 0
00 *0
00 +0
00 AO
00 BO
00 -0
00 CO
00 DO

NO 0
(
(

A

+
B
)

* (

C

D
)
) 0

The function in2pre translates an expression of the form defined by the
BNF

,e" -
, .. - symbol I (e symbol e) I (- e)

The prefix form is obtained by moving a symbol in the middle (operator)
position to the front of its list. Parentheses remain in the output.
Note that negations are already in prefix form.

111-3

Program:

(IN2PRE (LAMBDA (X) (COND
«ATOM X) X)
«EQ (CAR X) (QUOTE -» (LIST (CAR X) (IN2PRE (CADR X»»
(T (LIST (CADR X) (IN2PRE (CAR X»(IN2PRE (CADDR X»»»)

CAR, CADR, and CADDR are functions which extract the first, second, and
third elements, respectively, of a list.

The first line defines IN2PRE to be a LISP function, in conditional
expression form, of one argument.

The second line asserts that an atomic symbol is unchanged by IN2PRE.

The third line does the appropriate thing in the special case of the
unary " " operator.

The fourth line forms the output as a list of the main operator (CADR X)
followed by the results of applying IN2PRE, recursively, to its two
arguments.

Data and resulting output:

IN2PRE «(A * B) + (C / (E - (F t (-G»»)
(+ (* A B)(/ C (- E (t F (-G»»)

C. DYSTAL

Program:

C ** THIS IS A PROGRAM TO CONVERT A FULLY PARENTHESIZED ALGEBRAIC
C ** EXPRESSION INTO PREFIX FORM.
C ** THE FOLLOWING SPECIFICATION STATEMENTS SET UP THE DYNAMIC
C ** STORAGE AREA.

DIMENSION LOT (8191), FLOT(8l9l)
COMMON LOT
EQUIVALENCE(LOT(l), FLOT(l»
EQUIVALENCE(LOT(2l),LOP), (LOT(22),LSET), (LOT(23),LFORM),

1(LOT(24),LPREFX)
CALL INLOT(20,8l9l)

C ** INPUT USING LSREAD, WHICH IS CAPABLE OF READING MULTIPLE
C ** ARRAYS, MATRICES OR TREE STRUCTURES. LOP, THE FIRST LIST,
C ** CONTAINS THE SYMBOLS $, (,). LSET, THE SECOND LIST,
C ** CONTAINS THE ORIGINAL ALGEBRAIC EXPRESSION SUCH AS
C ** « ALPHA + (BETA * El» - (C/D». LSET WILL BE READ IN WITH A
C ** STANDARD DYSTAL FORMAT OF 5 FIELDS OF 4 CHARACTER WORDS PER
C ** CARD UNLESS A VARIABLE FORMAT IS SPECIFIED AT INPUT TIME.

CALL LSREAD(NAME)
LOP = LOT (NAME + 1)
LSET = LOT (NAME + 2)

111-4

NSET = LOT (LSET)
NSYMB = LOT (LOP + 1)
NDPAR = LOT (LOP + 3)

C ** CREATION OF ARRAYS. LFORM WILL BE
C ** USED AS A PUSHDOWN STACK TO HOLD PORTIONS OF EXPRESSIONS
C ** UNTIL THEY ARE READY TO BE USED. LPREFX HOLDS THE PREFIXED
C ** FORM OF THE EXPRESSION. BOTH LFORM AND LPREFX ARE SET AT A
C ** MAXIMUM OF NSET, THE LENGTH OF LSET.

CALL LSTALL(4, NSET, LFORM)
CALL LSTALL(4, NSET, LPREFX)

C ** STRATEGY. WHENEVER A RIGHT PAREN IS ENCOUNT-
C ** ERED A SUBEXPRESSION IS FORMED AND PLACED ON LPREFX AND A $
C ** IS LEFT IN ITS PLACE ON LFORM. THE PREFIXED EXPRESSION IS
C ** FORMED ON LPREFX IN REVERSE ORDER FOR THE SAKE OF CONVENIENCE
C ** AND LATER REVERSED.

DO 100 I = 1, NSET
C ** IPT IS THE LOCATION OF EACH ITEM ON LSET

IPT = LSET + I
C ** SEARCH FOR RIGHT PARENTHESIS.

IF(LOT(IPT) - NDPAR) 40, 50, 40
40 CALL LOAD(LOT(IPT), LFORM)

GO TO 100
C ** STORE LAST THREE WORDS IN 3, 1, 2 ORDER. SKIP STORAGE IF
C ** THE FIRST OR THIRD IS A $.

50 IWD = ITEM(LOT(LFORM), LFORM)
IF(IWD - NSYMB) 60, 70, 60

60 CALL LOAD(IWD, LPREFX)
70 IWD = ITEM(LOT(LFORM) - 2, LFORM)

IF(IWD - NSYMB) 80, 90, 80
80 CALL LOAD(IWD, LPREFX)
90 CALL LOAD (ITEM (LOT(LFORM) - 1, LFORM) , LPREFX)

C ** PLACE $ IN PLACE OF (.
CALL I PLACE (NSYMB, LFORM + LOT(LFORM) - 3)

C ** REDUCE LFORM COUNTER BY 3
LOT(LFORM) = LOT(LFORM) - 3

100 CONTINUE
C ** REVERSE LPREFX

CALL LREVER(LPREFX)
C ** PRINT OUT DYNAMIC STORAGE AREA

CALL KDu~P
STOP
END

111-5

Data: --
NAME 1 10

1 LOP 4 3 3
$ ()

2 LSET 4 17 17
((ALPH + (

BETA * EL))

(C / D
))
STOP

/*
/*

Resulting output:

DUMP OF LIST 1 NAME 5
IDEN = NODE = 0 MODE 2 NMAX 35 NCTR 35

134 8191 8191 0 0
0 0 0 0 0
0 0 0 0 0

60 68 90 112 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

DUMP OF LIST 2 NAME 45
IDEN = NAM NODE = 0 MODE 1 NMAX 10 NCTR 2

60 68

DUMP OF LIST 3 NAME 60
IDEN = LOP NODE = 0 MODE 4 NMAX 3 NCTR 3

$ ()

DUMP OF LIST 4 NAME 68
IDEN = LSE NODE = 0 MODE 4 NMJ\X 17 NCTR 17

((ALPH + (
BETA * E1))

(C / D
))

DUMP OF LIST 5 NAME 90
IDEN = NODE = 0 MODE = 4 NMAX = 17 NCTR = 1

$

111-6

DUMP OF LIST
IDEN =

ALPH

D. LISP2

6 NAME
NODE =

112
o MODE

/

*

4 NMAX =

C
B~A

D
El

17 NCTR 9

+

It is assumed here that the input to the function PREFIX is a list
containing variables (i.e., literal atoms), binary operators (i.e., +,
-, *,~, /) and subexpressions of the same form, appearing in
parentheses. Syntax equations for the input arithmetic expression are:

expression ::= primary I primary operator expression

primary ::= basic I (expression)

basic ::= number I variable

and number, variable, and operator are not defined further, but
represent tests that can be made. It is also assumed that the function
PREFIX should detect errors if the expression given it is ill-formed.

Program:

SYMBOL SECTION TEST:

FUNCTION PREFIX (L):

IF BASIC (L) THEN L ELSE

DO IF ATOM L THEN E : EXIT (L . '(IS NOT A LEGAL EXPRESSION»;

BLOCK (X ~ PREFIX (CAR L), Y ~ CDR L):

IF NULL Y THEN RETURN X;

IF ATOM Y THEN GO E;

BLOCK (Z ~ CAR Y):

Y ~ PREFIX (CDR Y);

IF OPERATOR (Z) THEN RETURN LIST (Z,X,Y)

ELSE EXIT (Z . '(IS NOT AN OPERATOR»END END END,

FUNCTION BASIC (X) : NUMB (X) OR VARIABLE (X),

FUNCTION PREFIXSUPV ():

BLOCK (X):

A: X ~ READ ();

IF X = 'FINISHED THEN RETURN X;

TRY (X, C, X ~ PREFIX (X»;

111-7

B: PRINT (X);

GO A;

C: PRINT ('ERROR ..); GO B; END;

The above function definitions use the general LISP list-processing
functions CAR, CDR and testing predicates ATOM, NULL, and the list­
building functions LIST and CONS (represented in source language by an
infix dot). NUMBP is true for a number, and it is assumed that
VARIABLE and OPERATOR are true for variables and operators, respectively.
A supervisor function is included here to show the ease with which
LISP2 enables the construction of supervisors to be done, and makes
the user see a different system. (The TRY statement used in the
supervisor allows control of error exit. The third argument of TRY
is a statement to be operated; if EXIT is encountered in its execution,
the value of the exit expression is placed into the first argument of
TRY, and control reverts to the label given as the second argument of
TRY.)

PREFIX can be called directly, as in the following example:

input:
output:

PREFIX ('(A + (B * Z) - (C + D) / (F + G»);
(+ A (- (* B 2) (/ (f C D) (+ F G»»

Instead, PREFIXSUPV () can be called, and the following conversation
could ensue:

input:
output:
input:
output:
input:
output:

input:
output:
input:
output:

E. L6

3
3

««(A») + ««B»»»
(+ A B)

(A B C)
ERROR .•

(B IS NOT AN OPERATOR)
(A + «B * 2) / (C + D - E»»

(+ A(/ (* B 2) (+ C (- DE»»
FINISHED

FINISHED

Assume as input a well-formed fully parenthesized algebraic
expression with single-letter variables and binary operators +, - *
and /, such as

«K-L)+(M*«N-O)/(P+(Q+««R*S)/(T*U»+V)*«W+X)-(Y+Z)»»»)

This can be converted into the corresponding prefix form

+-KL*M/-NO+P+Q*+/*RS*TUV-+WX+YZ

111-8

by a program which builds the appropriate binary tree, using 2-word
blocks divided into fields A, B, C and D as shown:

D
A /

C B

The one-line subroutines and two subordinate subroutines which do this
are coded as follows:

PREFIX THEN

TREE THEN
IF
THEN
THEN

(W,GT,2) (DO,TREE)(DO,OUTPUT)(W,IN,73) (1,PU,77)DONE

(WA, IN, 1)
(WA,NO,74)DONE
(WC,GT,2)(WCD,P,W)(W,C)(DO,TREE)(W,D)(WA,E,O)(WA,IN,1)
(WB,GT,2) (WBD,P,W) (W,B) (DO ,TREE) (W,D) (W,IN,1)(W,R,6)DONE

OUTPUT THEN
IF
THEN

(l,PU,WA)
(WC,N,O)THEN(W,C) (DO , OUTPUT) (W,B) (DO , OUTPUT)
(W,FR,WD)DONE

The subroutine PREFIX begins with bug (i.e. base register) W GeTting
a ~-block from free storage (W,GT,2). Then the subroutine TREE is
performed, which builds the tree, followed by subroutine OUTPUT which
prints out the results and throws the tree back to free storage.
Next an attempt is made to shift 73 characters of input into bug W by
(W,IN,73), a process which automatically stops at the end of the current
card, and thus positions the input mechanism for reading the next card.
Finally the special end-of-line character, 778 , is "PUnched"
to terminate this line and cause actual punching from the output buffer.

111-9

The subroutine TREE begins by reading one character of INput into
field WA (i.e. the A field of the block that W points to) by the
operation (WA,IN,l). Then if the contents of WA are Not Octal (a
left parenthesis), i.e., if this expression or subexpression is not
compound, then the subroutine is exited by the special go-to DONE.
Otherwise field WC "gets" a 2 block by (WC,GT,2), the D field of that
block is made to Point back to W's block by (WCD,P,W), W jumps to point
to this new block by (W,C) and this same subroutine is entered
recursi vely, to build a subtree for the 1 eft-h::l.nd subexpression. Then
W jumps back up by (W,D). It sets the A field of its bloc~ equ::ll to
zero by (WA,E,O) and shifts the next character, which should be the
connective, into this field by (WA,IN,l). The subroutine proceeds
similarly for the right-hRnd subexpression ~nd finplly disposes of
the right parenthesis by shifting it into W by (W,IN,l) pnd the
expelling it by shifting contents of Wright 6 bits by (W,R,6).

The subroutine OUTPUT PUnches one chRr~cter of output from the right­
end of WA by (l,PU,WA). If there are subtrees (i.e. if WC is Not 0),
W then jumps down to where the C field of its block pointed (W,C),
performs the OUTPUT subroutine, and then does the SA.me for the right­
hand subtree. The final operation (W,FR,WD) FRees the bloc~ th~t W was
pointing to but refills W wi th whRt W::l.S the contents of WD. Thus on
exit, W is one level higher in the tree than when the subroutine was
entered, and an entire subtree has been returned to free storage.

Running time for this subroutine on the 7094, for the above sample
problem not including buffered input/output, is 20 msec.

F. CORAL

The CORAL program described here considers the algebraic expression as
a string of elements of the following four types: left parenthesis,
right parenthesis, operator, and term. Each element is represented by
a CORAL bloc which is identifiable as to type of element, and these
blocks are strung sequentially in a CORAL ring. The program accepts
this ring as "input"; it rearranges and modifies the ring so that the
"output" ring represents the prefix form of the expression.

Program:

CONVERT~ START~SUBR~CUR"DONE

SUBR-+ (rn) G]RIGHT;,RSUBR

[=JOPR~OPRSUBR'MORE

RSUBR-. CUR@«C1])[i]LEFT.:>([!](PREV0)' (CUR®)JrEND) IMORE)~PREV~MORE

OPRSUBR-+ CURi3]«rn)G:\LEFT <CURG) PREV"-END) IMORE)~PREV'" MORE

III-10

The algorithm used is the following: Proceed through the ring from
"left to right" performing an action at each element. If the element
is a right parenthesis, delete it and the most recently encountered
left parenthesis; otherwise, if the element is an operator, move it to
the right of the most recently encountered left parenthesis; otherwise
nothing. After all of the elements have been scanned and the appropriate
actions performed, the expression has been converted to prefix form.

The line labelled CONVERT is the "go around the ring" [0 J causing

the subroutine SUBR to be done to each element. SUBR and the next

line test in turn whether the current element CUR is a right parenthesis,

in which case control goes to RSUBR l~RIGHT~RSUBRli or whether i~ is

an operator, in which case control goes to OPRSUBR~~OPR~OPRSUBRJ;
if neither, then the go-around is returned to l IMORE].

RSUBR backs up through the ring searching for a left parenthesis

lCUR@«[f])~LEFT:) ... \ MORE) PREV]; when found, it and the current

element are deleted from the ring [(I] (PREV®) \ (CUR0) ,.END)]

and control returns to the go-around.

OPRSUBR similarly backs up through the ring. When it finds a left

parenthesis, the current element CUR is put to the right of it

[CURe> PREV.rEND] and control returns to the go-around.

When CONVERT is done, it exits at DONE [.. DONE J.
CORAL is reasonably well suited for the prefix conversion problem when
performed on a pre-existing data base. However, due to the unavailability
of explicit input-output facilities in TX-2 CORAL, no meaningful sample
data and outputs can be included here. It should be noted that CORAL
is not intended for such stand-alone problems. Rather, CORAL was
designed for problems which involve manipulations of complex inter­
related data bases, such as those which occur in graphics applications.

G. AMBIT

This example is in the form established in l23J, where four other
examples of AMBIT are given.

Given an input of the form 'Q~ expl' where expl is a fully parenthesized
algebraic expression, this program produces an output string of the
form 'Q~ exp2' where exp2 is the Polish prefix equivalent of expl.

III-II

Program:

1. begin phrase dummy A, B, expl;
2. mark dummy op; word dummy EO;
3. QKexpl -+ Qll pll expl
4. LOOP: pll (A op B) -+ op pll A pll B or
5. pll (op B) -+ op pll B or
6. pll EO -+ EO
7. if 3 pll then go to LOOP;
8. end

Lines 1 and 2 of the program declare ~, ~, and expl to each represent
arbitrary operands; declare op to represent an arbitrary operator; and
declare EO to represent an arbitrary elementary operand (variable or
constantr:-

Line 3 is the beginning of the executable part of the program and
inserts the initial instance of the pointer 'pll' to the left of the
given expression.

Lines 4-6 perform the desired transformation for a binary expression,
a unary expressio~, or an elementary operand. These lines detect ill­
formed input by failing to apply.

Line 7 is the end test, and succeeds only if an instance of the pointer
'pE' remains.

Note: Line 4, if it succeeds, replaces one instance of 'pll' with two
instances, one for each operand. This is not recursive program execution,
although it might be called "data directedrecursion".

Data:

Qll «A+B)+(PHI (-3»)

Resulting output:

+ A B PHI 3

Trace of Example Execution. The following trace shows each modification
of the data string in the course of execution. Each line shows an
execution history (~ part of the data string) and a copy of the
current data string.

(input) Qll «A + B) = (PHIt(-3»)
3 succeeds: Qll plll «A + B) = (PHIf (-3»)
4s: Qll = plll (A + B) pll2 (PHI l' (-3»
7s,4s: Qll plll (A + B) .. pll2 PHI pll3 (-3)
7s,4f,58: Qll = plll (A + B) 1- pll2 PHI pll3 3
7s,4f,5f,6s: Qll plll (A + B) l' pll2 PHI 3
7s,4f,5f,6s: Qll plll (A + B) of' PHI 3

111-12

7s,4f: Q~ + p6l A p~ B t PHI 3
7s,4f,5f,6f: Q~ + p~ A B t PHI 3
7s,4f,5f,6s: Q6 = + A B + PHI 3
7s,4f,5f,6f (exit) (output)

H. COMIT

This program translates, from infix to prefix form, a string of symbols
defined by the BNF

e::= symbol I (e symbol e)

The output stripg consists of operator and operand symbols separated by
spaces and without parentheses.

Program:

* COMIT
CONVERT *(+ $1 + $1 + $1 + *)
* $ // *WAIl, *RTKI CONVERT
END

3 + - + 2 + - + 4 // *Kl 2 3 4 5 /

This COMIT program repeatedly locates one of the infix expressions which
has no parenthesized subexpressions and replaces it by the equivalent
prefix form. The data is read into the workspace with each constituent
being a string of letters or a plus, minus, slash, asterisk, or parenthesis.
Blank characters have been deleted. As prefix-form subexpressions are
formed, they are compressed to a single constituent. The convert rule
says: Search the workspace for a left parenthesis followed by any three
constituents and a right parenthesis. If the pattern is not found, go to
the next rule; if it is found, replace the pattern by the operator, a
blank, the left operand, a blank, and the right operand, all compressed
into a single constituent and then apply the same rule again. In order
to demonstrate the convert routine, a second rule has been added which
reads infix expressions from data cards and punches the prefix
expressions. This rule takes whatever is in the workspace, punches it,
and replaces it by the contents of the next data card. If there are
no more data cards, control passes to the next rule, not shown, and the
program is finished. The program starts at the first rule; the first
time through, the first rule does not find a match, and there is nothing
for the second rule to punch.

Data:

(A + B)
«9-1)/(2*2»
«PRESSURE*VOLUME)/TEMPERATURE)
«(A+B)*(C+D»/«E-F)*(G-H»)

111-13

Resulting output:

+ A B
/-91*22
/ * PRESSURE VOLUME TEMPERATURE
/ * + A B + C D * - E F - G H

I. SNOBOL

The following program works on the same class of data strings as the
preceding COM1T program. Where COM1T used repeated scans of the data
and identified processed substrings by compressing characters into
single "constituents", SNOBOL recursively identifies and processes
parenthetically-balanced subexpressions.

Program:

DEF1NE("P(P)", "p", "U,V,OP")

READ TEST TR1M(SYSP1T) /F(END)
SYSPOT
SYSPOT TEST
SYSPOT = P(TEST) /(READ)

P P "(" *(U)* *OP/"l"* *(V)* ")" OP P(U) P(V) /(RETURN)
END

I

2
3
4
5

6
7

Statement I defines a function P which generates the prefix form. For
convenience the formal argument is chosen to be the same as the name
of the function. U, V and OP are local variables of the function, and
execution of the function begins at the statement with label P (Statement
6).

Statement 2 reads in a card, removing trailing blanks. On a read failure,
the program is terminated by a transfer to end. SYSP1T stands for
"system peripheral output tape."

Statement 3 prints a blank line for listing format. SYSPOT stands for
"system peripheral output tape."

Statement 4 prints the algebraic expression.

Statement 5 calls the function P to convert the expression to prefix
form and prints the results.

Statement 6 is a one-line function which recursively generates the
prefix form. The string variables *(U)* and *(V)* match parenthesis
balanced strings. The pattern matched is replaced by its prefix form.
By SNOBOL convention, the value returned is the value of the name of
the function, P.

111-14

This program assumes fully parenthesized expressions (without redundant
parentheses), single character variables and single character operators.

Data and resulting output:

. « (A+B) +C) +D)
+++ABCD

«A-B)-(C-D»
--AB-CD

«A+(B*D»/(U-V»
/+A*BD-UV

««A*B)*C)+D)-«E*F)+G»
-+**ABCD+*EFG

«(A+B)+(C+D»*«E/F)/G»
*++AB+CD//EFG

J. PANON

The following PANON program reads a fully parenthesized arithmetic
expression followed by the symbol # (rules/READ,/1,/2,/3) and converts
it to Polish prefix notation (rule CONY). Such a class of expressions is
recursively defined within the program and noted as E*. If the string
being read does not belong to the class E* an error message is printed.
Otherwise the converted string is printed by the rule/PRINT.

Program:

'" =CM* THE SYMBOL
THE SYMBOL

" "'E =CD*

'" " =CD* OP

" =TR*/O

" =TR*/READ " =DMC

'" =TR*/l "'E* ##

"'=TR*/2 # #

'" =PRINT

'" =TR*/3* #

"'=TR*/CONV*

("'E*/1"OP"'E*/2*)

'" =LET*
" =DMC*
" =/*

'" =/*

=/*

" ==*
'" ==*
" ==*

'" ==*

* ERROR:
" ==*

'" '" ==* OP

DENaI'ES THE CLASS OF LETTERS
DENOTES THE CLASS OF DUMMY CHARACTERS

" =LET

(-"E
,..

"'E*) OP

+ =/* =/* * =/* /

" =GaI'O/*READ
.",

'" =GOTO*/l

'" =GOTO*/CONV E

?

" =AS* "'=GOTO*/STOP

" =GOTO*/READ =NC* #

"'=GOTO*/CONV

111-15

"=TR*/PRINT "==*

"==PRINT* " =AS* ~=GOTO*/STOP

" =END*

Trace of Typical Run:

The notation < NC\- cP > indicates that:

(a) The symbol -NC* is created.
(b) It is replaced by the symbol cp which is the new character

read in.

i) Input string: «A+B) * C) #

Initially the string is empty, then by applying the rule named in the
first column it is successively changed into t he string to the right:

0
3
3
3
3
3
3
3
3
3
3
1
CONV
CONV
PRINT
ii) Input string:
0
3
3
3
3
2

K. CONVERT

< NC (> #

(< NC (> #
« < NC A> #

«A < NC +> #
«A + < NC ~ B> #

«A + B < NC » #
«A + B) < NC *> #

«A + B)* < NC C> #
«A + B)*C < NC » #

«A + B)*C) < NC #.> #

(A + #

«A + B)* C)
*(A + B) C
*+ABC
*+ABC

< NC (> #

(< NC ft> #
(A < NC +> #

(A + < NC .J #.> #

[and prints: * +ABC]

(A+? [and prints: ERROR: (A+?]

The CONVERT program, like all varients and descendents of LISP, prefers
to leave the parentheses in its output. This particular program assumes
that unary operators are really binary with an implicitly zero first
argument, so that p and m (+ and -) are handled appropriately for both
one and two arguments. The input is not assumed to be fully parenthesized;
instead, standard operator procedence-;Ules are employed.

111-16

Program:

DEFINE«
1 (FORMTRAN (LAMBDA (u) (CONVERT
2 (LIST)
3 (QUOTE (X (LLL) (RRR»)
4 U
5 (QUOTE (* (
6 ((LLL P RRR) (P (=BEGN= (LLL» (=BEGN= (RRR»))

7 ((LLL M RRR) (M (=BEGN= (LLL» (=BEGN= (RRR»))

8 ((LLL * RRR) (* (=BEnN= (LLL» (=BEGN= (RRR»))

9 ((LLL / RRR) (/ (=BEnN= (LLL» (=BEGN= (RRR»))
10 ((LLL ** RRR) (** (=BEGN= (LLL» (=BEGN= (RRR»))

11 ((X) (=BEGN= X»
12 «) o)
13 »)
14 »)

»

(1) Defines "FORMTRAN" as a function of one argument, U. Then it calls
to CONVERT.

(2) The 1st argument of CONVERT, the dictionary, is empty.
(3) We define X as an undefined variable [UAR] and LLL and RRR as

undefined fragments.
(4) The 3rd argument of CONVERT is U, namely, the expression we want

to transform.
(5) In this line begins the CONVERT program; it consists of one set

of rules, named *.
(6) This is the 1st rule. Its left half is the pattern (LLL P RRR)

Its right half is the skeleton (P (=BEGN= (LLL»
(=BEGN= (RRR»)

The pattern match scans the expression for a plus sign (we are using
here P for plus sign and M for minus), and assigns the name LLL to the
fragment or string to the left of such sign, and RRR to t he fragment to
its right.

If the pattern matches (the search is successful), we replace the
scanned structure by the result of substituting into the skeleton,
(P (=BEGN=(LLL» (=BEGN=(RRR»), and this will be the result of our
program. This skeleton says that we should form a list of 3 elements:

p

(=BEGN= (LLL»
(=BEGN= (RRR»

Result = skeleton properly replaced:

First element: The atom P gets replaced and, since it does
not appear in the dictionary, it stands for
itself.

111-17

Second element: The skeleton (=BEGN=(LLL» will get replaced,
also, and its value is the result of applying
the same CONVERT program to (LLL) , that is,
to the left fragment.

Third element: The skeleton (=BEGN= (RRR» gets replaced
similarly. =BEGN= is the recursive call or
entry. In this case this entire CONVERT
program will be applied to (RRR); that is to
say, we will convert to prefix form the
string which was found to the right of P.

If the pattern of rule (6) does not match our expression (4), we apply
the next rule (7).

Does the same as (6), but it looks for minus sign. (7)
(8)

(9)} Test and conversion for times, quotient, and exponentiation.

This line handles parenthesized subexpressions
(10)
(11)
(12) The rule «)O) is used for unary - and +, for instance, -Q goes

into (O-Q);: +7 goes into (0+7).

If none of the above rules apply, the expression (4) is returned
unchanged as value.

The order of the rules (6) - (12) is important, and depends on the
hierarchy of the different operators; here we assume the standard
FORTRAN conventions.

Let us follow an example.
2

Suppose we want to convert a +9.

(4)
(6)

(a ** 2 P 9)
(LLL P RRR)

The 1st rule is tested and its pattern matches (4); now LLL
and RRR

a **
9

We then substitute into the skeleton (P (=BEGN=(LLL» (=BEGN=(RRR»),
obtaining (P (=BEGN=(a ** 2» (=BEGN= (9»).

(1) (=BEGN= (a ** 2» - The expression to transform is (a ** 2);
we apply to it the entire CONVERT program.
Rules (6) to (9) are tested and fail.
Rule (10) succeeds: (a ** 2)

(LLL ** RRR) now LLL = a
RRR = 2

So the answer will be (** (=BEGN=(A» (=BEGN=(2») In order to
compute (=BEGN=(A», we apply this entire program to (A); when doing this,
rules (6) to (10) fail; rule (11) succeeds and tells us to compute
(=BEGN=X), that is, (=BEGN=A); this value is computed by recursively
entering the program again, resulting in A. (All rules fail when their

111-18

patterns are compared with A, so A is returned unchanged). Similarly,
the value of (=BEGN= (2» is 2. Therefore, (** (=BEGN=(A» (=BEGN=
(2») gets replaced by (** A 2).

(2) (=BEGN= (9» gets evaluated and results in 9.

Therefore, (P (=BEGN= (a ** 2» (=BEGN= (9») becomes (p (** A 2) 9)
and this is the final result.

Simple rules govern the use of patterns and skeletons, when transforming
a given expression:

When we arrive to a certain rule:
We compare its pattern (left half of the rule) against the expres­
sion.

If the comparison succeeds, we replace into the 2nd half or
skeleton of the successful rule, and return this as value.
If the comparison fails, we try the same with the next rule.
If no more rules, return as value the expression unchanged.

Data and resulting outputs:

formtran« a ** 2 »
(** A 2)

formtran« a ** 2 p 9 »
(p (** A 2) 9)

formtran« a ** 2 m 9 I 6 »
(M (** A 2) (I 9 6»

formtran« (a** 2) m (9 I 6) »
(M (** A 2) (I 9 6 »

formtran« a p b * x I y p c * x ** 2 I y ** 2 p d * x ** 3 I
y ** 3 »
(P A (P (* B (Ix Y » (P (* C (I (** x 2) (** Y 2») (* D (
I (** X 3) (** Y 3 »» »

formtran « (a maO) p (b m bO) * (x m xO) I (ym yO) ** 2 »
(P (M A AO) (* (M B BO) (I (M X XO) (**(M Y YO) 2»»

L. FLIP

The following FLIP program operates on the same class of expressions as
the LISP program (part (b), above). This example illustrates the
complementary natures of LISP and FLIP. While LISP is well suited for
recursive problems, FLIP is designed for specifying a pattern-directed
transformation of a list.

111-19

Program:

DEFINE «(IN2PRE
(LAMBDA (X) (COND «ATOM X) X) (T (FLIP X (QUOTE
(EITHER['-$l; $1 EITHER['t; '*;'/; '+] $lJ»
(QUOTE (EITHER['MINUS =(IN2PRE #2)

EITHER['EXPT;'TIMES;'QUOTIENT; 'PLUS] =(IN2PRE #1) =(IN2PRE #3)J)
»»»»

FLIP is a LISP function which takes three arguments: a list, a pattern
which is used to match the list, and a format for constructing a new
list using the result of the match. For this particular problem, there
are two cases to be distinguished. In the first case, the list is of
the form (-X); in the second case, it is of the form (X operator Y)

. . "" "/" "" "£" where operator 1S e1ther +, ,*, or ~'. These two cases are
resolved by use of the EITHER pattern in FLIP. By using the EITHER
pattern inside of another EITHER pattern, in the second case, we can
distinguish among the various operators.

The format given to FLIP utilizes the EITHER format. This format
selects a format corresponding to the pattern matched by the associated
EITHER pattern. Thus, if the input list is of the form (-X), the first
format, or

'MINUS =(IN2PRE #2)
will be used for constructing a new list. In this format, 'MINUS
causes the atom "MINUS" to be inserted in the list being constructed,
while =(IN2PRE #2) specifies a call to IN2PRE giving it as its argument
the second element in the match, i.e., that element matched by $1. The
result of this call is inserted in the new list following MINUS.

If the list is of the form (X operator Y), then the second format is
used. This latter format in turn utilizes another EITHER format for
selecting among the different operators. Thus if the operator is "+",
then the format 'PLUS is used, if "*", then 'TIMES is used.

If the input list is of the form (=X) , a recursive call to IN2PRE
giving it X as input is used in the construction of the new list. If
the list is of the form (X operator Y), two calls to IN2PRE are
necessary, one with input X and one with input Y. The results of these
calls are inserted in the list which is being constucted.

Thus for the input list (A + (B * C», a new list if formed with PLUS
as its first element, IN2PRE applied to A as its second element, and
IN2PRE applied to (B * C) as its third element. Since IN2PRE applied
to A is A, and IN2PRE applied to (B * C) is (TIMES B C), the final
result if (PLUS A (TIMES Be».

111-20

Data and resulting outputs:

IN2PRE «A + B»
(PLUS A B)

IN2PRE «A + « - C) * (D / «B * C) + (- X»»»
(PLUS A (TIMES (MINUS C) (QUOTIENT D(PLUS (TIMES B C) (MINUS X»»)

M. COOENT

The following program converts arithmetic expressions form infix to
prefix notation. Its input is a sequence of expressions followed by
periods, where each expression is built up from alphanumeric variables
and integer constants, using the binary operators "+", "-", "*", "I",
and "**" , and the unary operators "+", and "_". Precedence rules similar
to ALGOL are used so that full parenthesation is unnecessary. The
output is a sequence of prefix expressions in which operators and
operands are separated by blanks, and unary operators are preceded by
"$" (since prefix notation is ambiguous unless unary and binary
operators are distinguishable).

The program consists of four sections:

1. Character definitions which establish ($EOF) and ($B) as special
symbols denoting an end-of-file and a blank.

2. A sequence of production rules describing the input language syntax.
Labels on the production rules refer to generators (subroutines)
and indicate how the corresponding input phrases are to be trans­
lated: < var >'s are converted to packed BCD symbol table entries,
< const >'s are converted to numbers, < primary >'s < factor >'s
< term >'s and < exp >'s are converted at each syntactic level
into equivalent prefix expressions, and translated < sentence >'s
are outputted by the generator PRINT.

3. Additional productions describing the output language syntax
(beginning with $SECSYN).

4. Generator definitions. The generators UNARY and BINARY synthesize
prefix expressions from operators and operands (which may them­
selves be previously-converted prefix expressions) by substitution
into a pattern phrase of output language. The generator PRINT
outputs a prefix expression and closes the line buffer.

Overall, the program is a straightforward example of syntax-directed
translation and is little more than a description of the input and' output
language syntax plus a direct mapping from input to output phrases.
The problem is too simple to illustrate any of the features of COGENT
which go beyond syntax-directed methods, e.g., analysis statements,
conditional transfers, or recursive generators.

111-21

Program:

$TITLE INFIX-TO-PREFIX-TRANSLATION.
$CHARDEF ($EOF) = (101)101. ($B) = (60)60.
$PRIMSYN «INPUT)($EOF»

(LETR) = A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z.
(DIGIT) = 0,1,2,3,4,5,6,7,8,9.
(EXPN OP) = **.
(MULT OP) = *,/.
(ADD OP) = +,-.
(NAME STR) = (LETR),(NAME STR)(LETR),(NAME STR)(DIGIT).
(DIGIT STR) = (DIGIT), (DIGIT STR)(DIGIT).

$IDENT,1/ (VAR) = (NAME STR).
$DEC/ (CONST) = (DIGIT STR).

NOP/ (PRIMARY) = (VAR),(CONST),«)(EXP)(».
NOP/ (FACTOR) = (PRIMARY).

BINARY/ (FACTOR) = (FACTOR)(EXPN OP)(PRIMARY).
NOP/ (TERM) = (FACTOR).

BINARY/ (TERM) = (TERM)(MULT OP)(FACTOR).
NOP/ (EXP) = (TERM).

UNARY/ (EXP) = (ADD OP)(TERM).
BINARY/ (EXP) = (EXP) (ADD OP)(TERM).

PRINT/ (SENTENCE) = (EXP)(.).
(INPUT) = (SENTENCE),(INPUT)(SENTENCE).

$SECSYN (OP) = (EXPN OP),(MULT OP),(ADD OP).
(PFX EXP) = (VAR),(CONST),$(ADD OP)($B) (PFX EXP) ,

(OP) ($B) (PFX EXP) ($B) (PFX EXP).
$ PROG RAM
$GENERATOR UNARY«OP,X)

X /= (PFX EXP/$(ADD OP)($B) (PFX EXP»,OP,X. $RETURN(X).).
$GENERATOR BINARY«X,OP,Y)

X /= (PFX EXP/(OP)($B)(PFX EXP) ($B) (PFX EXP»,OP,X,Y. $RETURN(X).).
$GENERATOR PRINT«X)

STANDSCN(X,PUTP). OUTP().).

Data:

(-X/Y+3)*Z.
ALPHA!(-BETA*(GAMMA-16».
-I/2+J*K**(-3).

Output:

* + $- / X Y 3 Z
/ ALPHA $- * BETA - GAMMA 16
+ $- / 1 2 * J ** K $- 3

111-22

The ALTRAN and Formula Algol programs following, solve variants of
problem 2: "Solve an.algebraic equation for the single occurrence of
some variable ~". The problem is trivial for ALTRAN provided the
equation is composed of polynomials. Formula Algol offers several
equally complicated-appearing solutions to a much more general version
of the problem.

N. ALTRAN

Problem:

Read in a polynomial F(X,Y,Z) linear in X. Verify this linearity.
Then solve the equation F(X,Y,Z) = 0 for X, and print the result.

Solution:

Clearly F(X,Y,Z) = A(Y,Z)X + B(Y,Z)

where A and B are polynomials, and the desired result is

X = G(Y Z) = B(Y,Z)
, A(Y,Z)

The first step is to declare all needed indentifiers and to establish a
layout for the polynomials and algebraics.

POLYNOMIAL A, B, F
ALGEBRAIC G
INTEGER FUNCTION DEG
POLYNOMIAL FUNCTION COEFF
LAYOUT (L) X 12, Y 12, Z 12

The first of these declarations specifies that A, B, and Fare
language variables whose values will be polynomials. Similarly, the
second says that G is a languag~ variable whose values will be algebraics,
or in other words, rational functions. The ,third declares that DEG is
an integer-valued function, and similarly the fourth declares that COEFF
is a polynomial-valued function. Finally the LAYOUT statement establishes
a layout (L) which specifies that X, Y, and Z are a set of data variables.
(i.e., variables from which polynomials and algebraics in the data may
be composed), and that 12 bits per term are to be allocated for the
exponents of each. (Since a data variable represents only itself, no
value can be assigned to it. Therefore data variables are sometimes
called symbolic constants.)

We now proceed to the program's executable part, which is almost self
explanatory to anyone familiar with FORTRAN II.

111-23

READ (L) F
IF (DEG(F)-l) 90,

10 A :::: COEFF(F,X,l)
B :::: COEFF(F,X,O)
G :::: B/A
PRINT "RESULT", G
STOP

90 PRINT "ERROR IN DATA"
STOP
END

10

Possible input data and corresponding results:

222 2
Suppose F :::: XY + 2XYZ + XZ - y + Z. Then the input data would
have the form

1 1 2 0
2 1 1 1
1 1 0 2

-1 0 2 0
1 o 0 2
0

The first five lines represent the five terms of F, and can occur in-any
order. In each line the first integer is the coefficient of the
corresponding term, apd the other three are the exponents. The last
line, consisting of a single zero, terminates F.

Clearly the desired result is G :::: (Y-Z)/(Y+Z). The statement

PRINT "RESULT", G

in our program will produce the output

RESULT

G ::::

NUMERATOR X Y Z
1 o 1 0

-1 o 0 1
DENOMINATOR X Y Z

1 0 1 0
1 o 0 1

111-24

Although the representation of a polynomial as an array of coefficients
and exponents is admittedly inconvenient for small polynomials « 10
terms), it is both easier to read and easier to write for large ones
(> 100 terms). In the Princeton version of ALTRAN there is an optional
variant of the READ statement which permits input data in FORTRAN form.

O. Formula Algol

A programming language is made rich by the availability within it of a
variety of programming techniques. The attached computer output present
three ways that Formula Algol can be used to solve an algebraic equation
for the single occurrence of the variable X. These three solutions
are by Markov Algorithms, by recursion, and by iteration. Formula
Algol is well suited to programming this problem because its data
structures and source language instructions were chosen to be well
adapted to problems in formal algebraic manipulation. It can be seen
from the attached programs that the Formula Algol programmer has detailed
control over the specification of formula manipulation algorithms and
that, at the same time, abbreviation devices, such as the Markov Algorithm,
make it convenient to write them. Brief explanations of the three
solutions are as follows:

I Markov Alogirthm Solution

Lines 12 to 29 define a Markov Algorithm which gives the rules of trans­
formation by which equations are to be solved for X. The equation to be
solved for X is stored as the value of the variable E in line 30, and
line 31 prints both E and E. +S, the result of apply the Markov
Algorithm S to E, which result is the solved equation. In lines 10 and
11, plus and times are defined to be operators with commutative properties
so that in line 14 and 15 commutative instances of AX Band A+B will be
considered. Lines 7, 8, and 9 define A to be a formula pattern which
will match any subexpression of a formula containing an occurrence of X,
and Band C to be formula patterns which will match any arbitrary sub­
expression of a formula. The A's, B's, and C's areu~ in the construction
of the left hand sides of the transformations in the Markov Algorithm
and stand for patterns with these properties. On the right hand sides
of the transformations the .A's, .B's, and .C's are objects which are
replaced by the subexpressions which match the A's, B's, and C's when a
given transformation applies to an input equation.

II Recursive Solution

Lines 4, 5, and 9 define patterns A, B, and C with the same properties as
in the Markov Algorithm solution. The recursive procedure Solve (LHS, RHS)
given in lines 8 to 28 analyzes the form of the left hand side of the
equation LHS, which is assumed to contain X, and recursively calls
Solve with that subexpression of LHS containing X as its new first
parameter, and an appropriate inverse expression composed of an appropriate
inverse operator applied to RHS and a subexpression of LHS not contain-
ing X as its new second parameter. The procedure Answer(E) given in

111-25

lines 30 to 34 a'nalyzes the input equa tion E to see which side contains
X and passes the side containing X as the left hand side and the side
not containing X as the right hand side to Solve which delivers the
answer to the problem. An equation is assigned to E in line 36 and
both E and Answer (E) are printed in line 37. The printed solution
is the same as that given in the first and third solutions.

III Iterative Solution

Lines 6 and 7 define two operator classes OPI and OP2 consisting respec­
tively of the binary operators to be used in input equations and the
unary operators to be used in input equations. An integer variable I
is attached to the definition of each operator class as an "Index". In
lines 12 and 13 the input 'equation G is compared with two patterns.
The first pattern matches if the left hand side of G contains a binary
operator in the class OPI and the index variable I is set to contain an
integer denoting the ordinal position of this operator in the list of
operators given on line 6. Similarly, the second pattern matches if
G's left hand side is of the form < unary operator> « expression »
and the index I is set to the ordinal position of the unary operator
in the list of unary operators in line 7. The integer value of this
index I is used in a designational expression containing a switch to
transfer control to an appropriate statement to perform the required
transformation of the equation. These transformations are given in
lines 15 to 27. The iteration is under the control of a for-while
statement and halts when the equation G has X as its left hand side.
The printed solution is the same as that for solutions I and II.

IV Comparison of the Three Solutions

seconds required

cells required

code required

Markov Algorithm

5 ± 1

232

771

Recursion

4 ± 1

471

826

Iteration

3 ± 1

183

595

The times given here are not measured as precisely as they shouM be
for a truly useful comparison.

Markov Algorithm:

002: AL BEGIN
003: FORM E,K,M,H,N,P;
004: FORM A,B,C,X; SYMBOL PLUS, TIMES, S;
005: BOOLEAN PROCEDURE HASX(F); VALUE F; FORM F;
006: HASX F » X;
007: ~A:OF(HASX);
008: Bt-B: ANY;
009: C C :ANY;
010: PLUS /[OPERATOR: +] [COMM :TRUE];

111-26

011: TIME~/[OPERATOR:*J[COMM:TRUE];
012: S [
013: [
014: (AITIMES\B) = CA = .C I .B,
015: (A\PLUS \B) = CA = .C - .B,
016: A B = CA = .C + .B,
017: B A = CA = .B - .C,
018: A I B = CA = .C * .B,
019: B I A = CA = .B I .C,
020: A + B = CA = .C '" (l/.B),
021: B ". A = C A = LN(.C)/LN(.B),
022: A = CA = -.C,
023: EXP(A) = CA=LN(.C),
024: LN(A) = C A = EXP (. C) ,
025: SQRT(A) = CA = .C t 2,
026: ARCTAN (A) = C A = SIN(.C)/COS(.C),
027: SIN(A) = C A = ARCTAN(.C/SQRT(l-.C.2»,
028: COS (A) = C A = ARCTAN(SQRT(1-.C+2)/.C),
029: X = c X = .C]] ;
030: E +- K t 2 + LN (M + SIN((Xt3-K)/(H+4)*Mf5)tN - K)*M =
031: PRINT(E, E.+S) ;
032: PRINT(CELLS);
033: END;

K+2 + LN(M + SIN(X+3 - K)/(H + 4)*M.5)tN - K)*M=P
X=(ARCT«EXP«P - K~2)/M) + K - M)t(l/N)ISQRT(l - EXP«P
-Kt2)/M) + K - M)t(1/N)+2»/M+5*(H + 4) = K)t(
.33333333333 +00)

Recursive Solution:

2. BEGIN FORM E,K,M,N,H,P,F,G,X;
3. SYMBOL PLUS ,TIMES;
4. BOOLEAN PROCEDURE HASX(F): VALUE F; FORM F; HASX F»X;

p. ,

5. PLUS /[OPERATOR:+][COMM: TRUE]; TIMES /[OPERATOR:*J[COMM: TRUE];
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

BEGIN
FORM PROCEDURE SOLVE(LH,RHS); FORM LHS,RHS;

BEGIN FORM A B,C;A A:OF(HASX);B B:ANY;C C:ANY;
IF LHS == (A[PLUS\B) THEN SOLV~SOLVE(A,RHS-B);
IF LHS == (A TIMES\B) THEN SOLV~SOLVE(A,RHS/B);
IF LHS == A-B THEN SOLVE SOLVE(A,RHS+B);
IF LHS == B-A THEN SOLVE SOLVE(A,B-RHS);
IF LHS == AlB THEN SOLVE SOLVE(A,RHS*B);
IF LHS == B/A THEN SOLVE SOLVE(A,B/RHS);
IF LHS == AtB THEN SOLVE SOLVE(A,RHS (liB»;
IF LHS == B+A THEN SOLVE SOLVE(A,LN(RHS)/LN(B»;
IF LHS == -A THEN SOLVE SOLVE(A,-RHS);
IF LHS == EXP(A) THEN SOLVE SOLVE(A,LN(RHS»;
IF LHS == LN(A) THEN SOLVE SOLVE(A,EXP(RHS»;
IF LHS == SQRT(A) THEN SOLVE SOLVE(A,RHSt2);

111-27

22. IF LHS == ARCTAN(A) THEN SOLVE - SOLVE(A,SIN(RHS)/COS(RHS»;
23. IF LHS == SIN(A) THEN
24. SOLVE - SOLVE(A,ARCTAN(RHS/SQRT(1-RHSt2»);
25. IF LHS == COS (A) THEN
26. SOLVE - SOLVE(A,ARCTAN(SQRT(1-RHS~2)/RHS»;
27. IF LHS == X THEN SOLVE 4- X = RHS;
28 END;
29.
30. FORM PROCEDURE ANSWER(E); FORM E;
31. BEGIN FORM F,G;
32. IF E == G:ANY=F: ANY THEN BEGIN IF F.»X THEN
33. ANSWE~SOLVE(F,G) ELSE ANSWE~SOLVE(G,F) END ELSE
34. ANSWER-.NOEQUATION; END;
35.
36. E - K~2 + LN(M + SIN«X~3-K)/(H+4)*M~5)+N-K)*M =P;
37. PRINT(E,ANSWER(E»; PRINT(CELLS);
38. END; END;

Kt2 + LN(M + SIN«X+3 - K)/(H + 4)*M+5)tN - K)*M=P
X=(ARCT«EXP«P - Kt2)/M) + K - M)t(l/N)/SQRT(l - EXP«P
- Kt2)/M) + K - M)~(1/N)~2»/M~5*(H + 4) + K)t(1/3)

002:
003:
004:
005:
006:
007:
008:
009:
010:
011:
012
013:
014:
015:
016:
017:
018:
019:
020:
021
022:
023:
024:
025:
026:
027:

Iterative Solution

BEGIN
FORM G,K,M,H,N,P,A,B,C,X;SYMBOL OP1,OP2;
INTEGER 1; SWITCH ~ L1,L2,L3,L4,L5;
SWITCH Q - Q1,Q2,Q3,Q4,Q5,Q6,Q7;
OPl-/[OPERATOR:*,+,-,/,t][INDEX:I];
OP~/[OPERATOR:-,EXP,LN,SQRT,ARCTAN,SIN,COSJ[INDEX:IJ
G-Kt2 +LN(M+SIN((Xt3-K)/(H+4)*M~5) N-K)*M=P;

FOR G - G WHILE -(G == X=ANY) DO
BEGIN
IF G == (A,:ANYIOP1\B:ANY)=C:ANY THEN GO TO L[I];
IF G == (+\OP2 A:ANY)=C:ANY THEN GO TO Q[IJ;
PRINT(.NOEQUATION): GO TO EXIT;
L1:G-IF A»X THEN A=C/B ELSE B=C/A; GO TO CONTINUE;
L2:G-IF A»X THEN A=C-B ELSE B=C-A; GO TO CONTINUE;
L3:G-IF A»X THEN A=C+B ELSE B=A-C; GO TO CONTINUE;
L4:G-IF A»X THEN A=C*B ELSE B=A/C; GO TO CONTINUE;
L5:~IF A»X THEN A=C1(l/B) ELSE B=LN(C)/LN(A);

GO TO CONTINUE;
Q1 :G-A=.-C; GO TO CONTINUE;
Q2:~A~LN(C); GO TO CONTINUE;
Q3:G-A=EXP(C); GO TO CONTINUE;
Q4:~A=ct2; GO TO CONTINUE
Q5:'G+-A=SIN(C)/COS(C); GO TO CONTINUE;
Q6:G+-A=ARCTAN(C/SQRT(l-C~»; GO TO CONTINUE;
Q7:G+-A=ARCTAN(SQRT(l-Ct2)/C); GO TO CONTINUE;

111-28

028 : CONT INUE :
029: END;
030: EXIT: ;
031: PRINT(G);PRINT(CELLS);
032: END;

X=(ARCT«EXP«P - Kt2)/M + K - M)t(1/N)/SQRT(1 - (EXP«P
- Kf2)/M) + K - M)~(1/N)t2»/M+5*(H + 4) + K)t(1/3)

111-29

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

REFERENCES

B. F. Green, "Computer Languages for Symbol Manipulation,"
IRE Trans. HFE 2 (March 1961).

B. Raphael, "Aspects and Applications of Symbol Manipulation,"
Proc. 21st Nat. Conf. ACM (August 1966).

M. V. Wilkes, "Lists and Why They Are Useful," Proc. 19th Nat.
Conf. ACM (August 1964).

J. E. Sammet, "Formula·Manipulation by Computer," TR 00.1363,
IBM Systems Development Division, Poughkeepsie, New York
(November 1965).

A. Newell, ed., Information Processing Language-V Manual,
Prentice Hall, Englewood Cliffs, N.J., 2nd edition (1963).

A. Newell, "Documentation of IPL-V," Comm. ACM 6, No.3
(March 1963).

J. McCarthy,et al., LISPl.5 Programmer's Manual, MIT Press,
Cambridge, Mass. (1962).

E. C. Berkeley and D. G. Bobrow, eds., The Programming Language
LISP: Its Operation and Applications, MIT Press, Cambridge,
Mass. (1966).

J. Weizenbaum, "Symmetric List Processor," Comm. ACM 6, No.9
(September 1963).

K. C. Knowlton, "A Programmer's Description of L6,: Comm. ACM
9, No.8 (August 1966).

6 Two excellent l6mm sound films describing L are available on
loan from Technical Information Libraries, Bell Telephone
Laboratories, Inc., Murray Hill, N.J.

V. H. Yngve, COMIT Programming, MIT Press, Cambridge, Mass.
(in preparation 1966); see also SHARE distribution on COMIT.

D. G. Boprow and B. Raphael, "A Comparison of List-Processing
Computer Languages," Comm. ACM 7, No.4 (April 1964).

J. M. Sakoda, DYSTAL Manual, Sociology Computer Laboratory,
Brown University, Providence, R.I. (1965).

P. W. Abrahams, et al., "The LISP2 Programming Language and
System," AFIPS Proc. FJCC 29 (November 1966)

16. Formula Algol User's Manual, Carnegie Institute of Technology,
Pittsburgh, Pa. (in preparation).

17. L. G. Roberts, "Graphical Communication and Control Languages,"
Second Conf. on Information System Science, Hot Springs, Va.
(1964) .

18. W. R. Sutherland, "The CORAL Language and Data Structures,"
contained in Tech. Report 405, MIT Lincoln Laboratory, Lexington,
Mass. (1966).

19. FORMAC Manual, IBM Corp., Program Information Dept., 40 Saw Mill
River Road, Hawthorne, N.Y.

20. W. S. Brown, "A Language and System for Symbolic Algebra on a
Digital Computer," Proc. IBM Scientific Computing Symposium on
Computer-Aided Experimentation (October 1965).

21. W. S. Brown, et a1., "The ALPAK System for Nonnumerical Algebra
on a Digital Computer," Bell System Tech. J. 42, pp. 2081-2119
(1963); 43, pp. 785-804 (1964); 44, pp. 1547-1562 (1964).

22. C. Christensen, "On the Implementation of AMBIT, a Language
for Symbol Manipulation," Comm. ACM 9, No.8 (August 1966).

23. C. Christensen, "Examples of Symbol Manipulation in the AMBIT
Programming Language," Proc. 20th Nat'l. Conf. ACM (August
1965).

24. D. J. Farber, et a1., "SNOBOL, a String-Manipulation Language,"
J. ACM 11, No.1 (January 1964).

25. D. J. Farber, et al., "The SNOBOL3 Programming Language,"
Bell System Tech. J. (July-August 1966).

26. A. Caracciolo, et al., "PANON-lB, a Progranuning Language for
Symbol Manipulation," abstract in Corom. ACM 9,
No.8 (August 1966).

27 . D. G. Bobrow and J. Weizenbaum, "List Processing and Extension
of Language Facility by Embedding," IEEE Trans. EC 13, No.4
(August 1964).

28. A. Guzman and H. McIntosh, "CONVERT," Comm. ACM 9, No. 8
(August 1966).

29. W. Tei telman, "FLIP--a Format List Processor," Memo MAC-M-263,
MIT Project MAC, Cambridge, Mass. (1966).

30. J. Reynolds, "An Introduction to the COGENT Progranuning System,"
Proc. 20th Nat. Conf. ACM (August 1965).

31. J. Reynolds, "COGENT Programming Manual," ANL-7022, Argonne
National Laboratory (March 1965).

32. C. N. Mooers and L. P. Deutsch, "TRAC, a Text Handling Language,"
Proc. 20th Nat'l. Conf. ACM, pp. 229-246 (August 1965).

33. C. Strachey, "General-Purpose Macrogenerator," Computer J.
(October 1965).

34. K. Cohen and J. H. Wegstein, "AXLE: an Axiomatic Language for
String Transformations," Comm. ACM 8, No. 11 (November 1965).

35. E. C. Haines, "The TREET List-Processing Language," SR-133,
Mitre Corp., Bedford, Mass. (April 1965).

36. J. E. Sammet, "An Annotated Descriptor Based Bibliography on
the Use of Computers for Doing Non-Numerical Mathematics,"
Computing Reviews 7, No.4 (July-August 1966).

